Title:
|
The Morse-Sard-Brown Theorem for Functionals on Bounded Fréchet-Finsler Manifolds (English) |
Author:
|
Eftekharinasab, Kaveh |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 |
Volume:
|
23 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
101-112 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study Lipschitz-Fredholm vector fields on bounded Fréchet-Finsler manifolds. In this context we generalize the Morse-Sard-Brown theorem, asserting that if $M$ is a connected smooth bounded Fréchet-Finsler manifold endowed with a connection $\mathcal {K}$ and if $\xi$ is a smooth Lipschitz-Fredholm vector field on $M$ with respect to $\mathcal {K}$ which satisfies condition (WCV), then, for any smooth functional $l$ on $M$ which is associated to $\xi$, the set of the critical values of $l$ is of first category in $\mathbb{R}$. Therefore, the set of the regular values of $l$ is a residual Baire subset of $\mathbb {R}$. (English) |
Keyword:
|
Fréchet manifolds |
Keyword:
|
condition (CV) |
Keyword:
|
Finsler structures |
Keyword:
|
Fredholm vector fields |
MSC:
|
58B15 |
MSC:
|
58B20 |
MSC:
|
58K05 |
idZBL:
|
Zbl 1338.58027 |
idMR:
|
MR3436678 |
. |
Date available:
|
2016-01-19T13:46:11Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144798 |
. |
Reference:
|
[1] Bejan, C.L.: Finsler structures on Fréchet bundles.Proc. 3-rd Seminar on Finsler spaces, Univ. Braşov 1984, 1984, 49-54, Societatea de ştiinţe Matematice Romania, Bucharest, MR 0823295 |
Reference:
|
[2] Dodson, C.T.J.: Some recent work in Fréchet geometry.Balkan J. Geometry and Its Applications, 17, 2, 2012, 6-21, Zbl 1286.58004, MR 2911963 |
Reference:
|
[3] Eftekharinasab, K.: Sard's theorem for mappings between Fréchet manifolds.Ukrainian Math. J., 62, 12, 2011, 1896-1905, MR 2958816, 10.1007/s11253-011-0478-z |
Reference:
|
[4] Eftekharinasab, K.: Geometry of Bounded Fréchet Manifolds.Rocky Mountain J. Math., to appear, |
Reference:
|
[5] Eliasson, H.: Geometry of manifolds of maps.J. Differential Geometry, 1, 1967, 169-194, Zbl 0163.43901, MR 0226681, 10.4310/jdg/1214427887 |
Reference:
|
[6] Glöckner, H.: Implicit functions from topological vector spaces in the presence of metric estimates.preprint, Arxiv:math/6612673, 2006, MR 2269430 |
Reference:
|
[7] Hamilton, R.S.: The inverse function theorem of Nash and Moser.Bulletin of the AMS, 7, 1982, 65-222, Zbl 0499.58003, MR 0656198, 10.1090/S0273-0979-1982-15004-2 |
Reference:
|
[8] Müller, O.: A metric approach to Fréchet geometry.Journal of Geometry and Physics, 58, 11, 2008, 1477-1500, Zbl 1155.58002, MR 2463806, 10.1016/j.geomphys.2008.06.004 |
Reference:
|
[9] Palais, R.S.: Lusternik-Schnirelman theory on Banach manifolds.Topology, 5, 2, 1966, 115-132, Zbl 0143.35203, MR 0259955, 10.1016/0040-9383(66)90013-9 |
Reference:
|
[10] Palais, R.S.: Critical point theory and the minimax principle.Proc. Symp. Pur. Math., 15, 1970, 185-212, Zbl 0212.28902, MR 0264712, 10.1090/pspum/015/0264712 |
Reference:
|
[11] Tromba, A.J.: A general approach to Morse theory.J. Differential Geometry, 12, 1, 1977, 47-85, Lehigh University, Zbl 0344.58012, MR 0464304 |
Reference:
|
[12] Tromba, A.J.: The Morse-Sard-Brown theorem for functionals and the problem of Plateau.Amer. J. Math., 99, 1977, 1251-1256, Zbl 0373.58003, MR 0464285, 10.2307/2374024 |
Reference:
|
[13] Tromba, A.J.: The Euler characteristic of vector fields on Banach manifolds and a globalization of Leray-Schauder degree.Advances in Mathematics, 28, 2, 1978, 148-173, Zbl 0383.58001, MR 0493919, 10.1016/0001-8708(78)90061-0 |
. |