Article
Keywords:
sign pattern; potentially nilpotent pattern; spectrally arbitrary pattern
Summary:
An $n\times n$ sign pattern $\mathcal {A}$ is said to be potentially nilpotent if there exists a nilpotent real matrix $B$ with the same sign pattern as $\mathcal {A}$. Let $\mathcal {D}_{n,r}$ be an $n\times n$ sign pattern with $2\leq r \leq n$ such that the superdiagonal and the $(n,n)$ entries are positive, the $(i,1)$ $(i=1, \dots , r)$ and $(i,i-r+1)$ $(i=r+1, \dots , n)$ entries are negative, and zeros elsewhere. We prove that for $r\geq 3$ and $n \geq 4r-2$, the sign pattern $\mathcal {D}_{n,r}$ is not potentially nilpotent, and so not spectrally arbitrary.
References:
[1] Brualdi, R. A., Ryser, H. J.:
Combinatorial Matrix Theory. Encyclopedia of Mathematics and Its Applications 39 Cambridge University Press, Cambridge (1991).
MR 1130611 |
Zbl 0746.05002
[2] Catral, M., Olesky, D. D., Driessche, P. van den:
Allow problems concerning spectral properties of sign pattern matrices: a survey. Linear Algebra Appl. 430 (2009), 3080-3094.
MR 2517861
[3] Cavers, M. S., Meulen, K. N. Vander:
Spectrally and inertially arbitrary sign patterns. Linear Algebra Appl. 394 (2005), 53-72.
MR 2100576
[4] Gao, Y., Li, Z., Shao, Y.:
A note on spectrally arbitrary sign patterns. JP J. Algebra Number Theory Appl. 11 (2008), 15-35.
MR 2458665 |
Zbl 1163.15008
[5] Garnett, C., Shader, B. L.:
A proof of the $T_n$ conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns. Linear Algebra Appl. 436 (2012), 4451-4458.
MR 2917422 |
Zbl 1244.15020
[6] Horn, R. A., Johnson, C. R.:
Matrix Analysis. Cambridge University Press, Cambridge (1985).
MR 0832183 |
Zbl 0576.15001