Previous |  Up |  Next

Article

Title: $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$ (English)
Author: Shao, Yanling
Author: Gao, Yubin
Author: Gao, Wei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 671-679
Summary lang: English
.
Category: math
.
Summary: An $n\times n$ sign pattern $\mathcal {A}$ is said to be potentially nilpotent if there exists a nilpotent real matrix $B$ with the same sign pattern as $\mathcal {A}$. Let $\mathcal {D}_{n,r}$ be an $n\times n$ sign pattern with $2\leq r \leq n$ such that the superdiagonal and the $(n,n)$ entries are positive, the $(i,1)$ $(i=1, \dots , r)$ and $(i,i-r+1)$ $(i=r+1, \dots , n)$ entries are negative, and zeros elsewhere. We prove that for $r\geq 3$ and $n \geq 4r-2$, the sign pattern $\mathcal {D}_{n,r}$ is not potentially nilpotent, and so not spectrally arbitrary. (English)
Keyword: sign pattern
Keyword: potentially nilpotent pattern
Keyword: spectrally arbitrary pattern
MSC: 05C50
MSC: 15A18
idZBL: Zbl 06644026
idMR: MR3556860
DOI: 10.1007/s10587-016-0285-7
.
Date available: 2016-10-01T15:15:45Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145864
.
Reference: [1] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory.Encyclopedia of Mathematics and Its Applications 39 Cambridge University Press, Cambridge (1991). Zbl 0746.05002, MR 1130611
Reference: [2] Catral, M., Olesky, D. D., Driessche, P. van den: Allow problems concerning spectral properties of sign pattern matrices: a survey.Linear Algebra Appl. 430 (2009), 3080-3094. MR 2517861
Reference: [3] Cavers, M. S., Meulen, K. N. Vander: Spectrally and inertially arbitrary sign patterns.Linear Algebra Appl. 394 (2005), 53-72. MR 2100576
Reference: [4] Gao, Y., Li, Z., Shao, Y.: A note on spectrally arbitrary sign patterns.JP J. Algebra Number Theory Appl. 11 (2008), 15-35. Zbl 1163.15008, MR 2458665
Reference: [5] Garnett, C., Shader, B. L.: A proof of the $T_n$ conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns.Linear Algebra Appl. 436 (2012), 4451-4458. Zbl 1244.15020, MR 2917422
Reference: [6] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (1985). Zbl 0576.15001, MR 0832183
.

Files

Files Size Format View
CzechMathJ_66-2016-3_10.pdf 180.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo