Previous |  Up |  Next

Article

Title: A linear programming approach to error bounds for random walks in the quarter-plane (English)
Author: Goseling, Jasper
Author: Boucherie, Richard J.
Author: van Ommeren, Jan-Kees
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 5
Year: 2016
Pages: 757-784
Summary lang: English
.
Category: math
.
Summary: We consider the steady-state behavior of random walks in the quarter-plane, in particular, the expected value of performance measures that are component-wise linear over the state space. Since the stationary distribution of a random walk is in general not readily available we establish upper and lower bounds on performance in terms of another random walk with perturbed transition probabilities, for which the stationary distribution is a geometric product-form. The Markov reward approach as developed by van Dijk is used to bound the perturbation error. The main contribution of the work is the formulation of finite linear programs that provide upper and lower bounds to the performance of the original random walk. Most importantly, these linear programs establish bounds on the bias terms. This leverages an important drawback in the application of the Markov reward approach, which in existing literature is based on meticulously crafted bounds on the bias terms. (English)
Keyword: random walk
Keyword: quarter-plane
Keyword: reflected random walk
Keyword: stationary distribution
Keyword: error bound
Keyword: Markov reward approach
Keyword: linear programming
MSC: 60G50
MSC: 60K25
MSC: 90B22
idZBL: Zbl 06674938
idMR: MR3602014
DOI: 10.14736/kyb-2016-5-0757
.
Date available: 2017-01-02T13:29:25Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145967
.
Reference: [1] Bayer, N., Boucherie, R. J.: On the structure of the space of geometric product-form models..Probab. Engrg. Inform. Sci. 16 (2002), 02, 241-270. Zbl 1004.60091, MR 1891475, 10.1017/s0269964802162073
Reference: [2] Bertsimas, D., Paschalidis, I. C., Tsitsiklis, J. N.: Optimization of multiclass queueing networks: Polyhedral and nonlinear characterizations of achievable performance..Ann. Appl. Prob. 4 (1994), 1, 43-75. Zbl 0797.60079, MR 1258173, 10.1214/aoap/1177005200
Reference: [3] Boucherie, R. J., Dijk, N. M. van: Monotonicity and error bounds for networks of Erlang loss queues..Queueing Systems 62 (2009), 1-2, 159-193. MR 2520746, 10.1007/s11134-009-9118-9
Reference: [4] Chen, Y., Bai, X., Boucherie, R. J., Goseling, J.: Performance measures for the two-node queue with finite buffers..Under review at Performance Evaluation.
Reference: [5] Chen, Y., Boucherie, R. J., Goseling, J.: Invariant measures and error bounds for random walks in the quarter-plane based on sums of geometric terms..Under review at Queueing Systems. Zbl 1348.60068
Reference: [6] Cohen, J. W., Boxma, O. J.: Boundary Value Problems in Queueing System Analysis. Zbl 0662.60097
Reference: [7] Farias, D. P. de, Roy, B. Van: The linear programming approach to approximate dynamic programming..Oper. Res. 51 (2003), 6, 850-865. MR 2019651, 10.1287/opre.51.6.850.24925
Reference: [8] Farias, D. P. de, Roy, B. Van: A cost-shaping linear program for average-cost approximate dynamic programming with performance guarantees..Math. Oper. Res. 31 (2006), 3, 597-620. MR 2254426, 10.1287/moor.1060.0208
Reference: [9] Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann-Hilbert problem..Probab. Theory Related Fields 47 (1979), 3, 325-351. Zbl 0395.68032, MR 0525314, 10.1007/bf00535168
Reference: [10] Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter Plane: Algebraic Methods, Boundary Value Problems, and Applications. Zbl 0932.60002, MR 1691900
Reference: [11] Goseling, J., Boucherie, R. J., Ommeren, J. C. W. van: Energy-delay tradeoff in a two-way relay with network coding..Perform. Evaluation 70 (2013), 11, 981-994. 10.1016/j.peva.2013.08.002
Reference: [12] Kroese, D. P., Scheinhardt, W. R. W., Taylor, P. G.: Spectral properties of the tandem Jackson network, seen as a quasi-birth-and-death process..Ann. Appl. Probab. 14 (2004), 4, 2057-2089. Zbl 1078.60078, MR 2099663, 10.1214/105051604000000477
Reference: [13] Kumar, S., Kumar, P. R.: Performance bounds for queueing networks and scheduling policies..IEEE Trans. Automat. Control 39 (1994), 8, 1600-1611. Zbl 0812.90049, MR 1287267, 10.1109/9.310033
Reference: [14] Latouche, G., Mahmoodi, S., Taylor, P. G.: Level-phase independent stationary distributions for GI/M/1-type Markov chains with infinitely-many phases..Perform. Evaluation 70 (2013), 9, 551-563. 10.1016/j.peva.2013.05.004
Reference: [15] Miyazawa, M.: Tail decay rates in double QBD processes and related reflected random walks..Math. Oper. Res. 34 (2009), 3, 547-575. Zbl 1213.60151, MR 2555336, 10.1287/moor.1090.0375
Reference: [16] Morrison, J. R., Kumar, P. R.: New linear program performance bounds for queueing networks..J. Optim. Theory Appl. 100 (1999), 3, 575-597. Zbl 0949.90019, MR 1684537, 10.1023/a:1022638523391
Reference: [17] M{ü}ller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks..Wiley, 2002. Zbl 0999.60002, MR 1889865
Reference: [18] Taylor, P. G., Dijk, N. M. van: Strong stochastic bounds for the stationary distribution of a class of multicomponent performability models..Oper. Res. 46 (1998), 5, 665-674. MR 1653218, 10.1287/opre.46.5.665
Reference: [19] Dijk, N. M. van: Simple bounds for queueing systems with breakdowns..Perform. Evaluation 8 (1988), 2, 117-128. MR 0938482, 10.1016/0166-5316(88)90017-x
Reference: [20] Dijk, N. M. van: Sensitivity error bounds for non-exponential stochastic networks..Kybernetika 31 (1995), 2, 175-188. MR 1334508
Reference: [21] Dijk, N. M. van: Error bounds for arbitrary approximations of "nearly reversible'' Markov chains and a communications example..Kybernetika 33 (1997), 2, 171-184. MR 1454277
Reference: [22] Dijk, N. M. van: Bounds and error bounds for queueing networks..Ann. Oper. Res. 79 (1998), 295-319. MR 1630884, 10.1023/a:1018978823209
Reference: [23] Dijk, N. M. van: Error bounds and comparison results: The Markov reward approach for queueing networks..In: Queueing Networks: A Fundamental Approacm (R. J. Boucherie and N. M. Van Dijk, eds.), International Series in Operations Research and Management Science 154, Springer, 2011, pp. 397-459. MR 2796367, 10.1007/978-1-4419-6472-4_9
Reference: [24] Dijk, N. M. van, Lamond, B. F.: Simple bounds for finite single-server exponential tandem queues..Oper. Res. 36 (1998), 3, 470-477. MR 0955756, 10.1287/opre.36.3.470
Reference: [25] Dijk, N. M. van, Miyazawa, M.: Error bounds for perturbing nonexponential queues..Math. Oper. Res. 29 (2004), 3, 525-558. MR 2082617, 10.1287/moor.1040.0111
Reference: [26] Dijk, N. M. van, Puterman, M. L.: Perturbation theory for Markov reward processes with applications to queueing systems..Adv. Appl. Probab. 20 (1998), 1, 79-98. MR 0932535, 10.2307/1427271
.

Files

Files Size Format View
Kybernetika_52-2016-5_6.pdf 496.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo