Previous |  Up |  Next

Article

Title: The covering semigroup of invariant control systems on Lie groups (English)
Author: Ayala, Víctor
Author: Kizil, Eyüp
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 6
Year: 2016
Pages: 837-847
Summary lang: English
.
Category: math
.
Summary: It is well known that the class of invariant control systems is really relevant both from theoretical and practical point of view. This work was an attempt to connect an invariant systems on a Lie group $G$ with its covering space. Furthermore, to obtain algebraic properties of this set. Let $G$ be a Lie group with identity $e$ and $\Sigma \subset \mathfrak{g}$ a cone in the Lie algebra $\mathfrak{g}$ of $G$ that satisfies the Lie algebra rank condition. We use a formalism developed by Sussmann, to obtain an algebraic structure on the covering space $\mathbf{\Gamma }(\Sigma ,x),x\in G$ introduced by Colonius, Kizil and San Martin. This formalism provides a group $\widehat{G}(X)$ of exponential of Lie series and a subsemigroup $ \widehat{S}({X})\subset \widehat{G}(X)$ that parametrizes the space of controls by means of a map due to Chen, which assigns to each control a noncommutative formal power series. Then we prove that $\Gamma (\Sigma ,e)$ is the intersection of $\widehat{S}(X)$ with the congruence classes determined by the kernel of a homomorphism of $\widehat{S}(X)$. (English)
Keyword: control systems
Keyword: homotopy of trajectories
Keyword: covering semigroup
MSC: 14F35
MSC: 57M10
MSC: 93C30
idZBL: Zbl 06707376
idMR: MR3607850
DOI: 10.14736/kyb-2016-6-0837
.
Date available: 2017-02-13T11:38:39Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145992
.
Reference: [1] Ayala, V.: Controllability of Nilpotent Systems..Banach Center Publications. Polish Academy of Sciences 32 (1995), 35-46. Zbl 0839.93018, MR 1364418, 10.4064/bc106-0-3
Reference: [2] Ayala, V., Martin, L. San, Ribeiro, R.: Controllability on Sl(2,C) with restricted controls..SIAM J. Control Optim. 52 (2014), 2548-2567. MR 3252797, 10.1137/130943662
Reference: [3] Bonnard, B., Jurdjevic, V., Kupka, I., Sallet, G.: Transitivity of families of invariant vector fields on semi-direct product of Lie groups..Trans. Amer. Math. Soc. 271 (1982), 521-535. 10.1090/s0002-9947-1982-0654849-4
Reference: [4] Brockett, R.: System theory on groups and coset spaces..SIAM J. Control 1 (1972), 265-284. MR 0315559, 10.1137/0310021
Reference: [5] Chen, K.: Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula..Ann. Math. 65 (1975), 163-178. Zbl 0077.25301, MR 0085251, 10.2307/1969671
Reference: [6] Colonius, F., Kizil, E., Martin, L. San: Covering space for monotonic homotopy of trajectories of control systems..J. Differential Equations 216 (2005), 324-353. MR 2162339, 10.1016/j.jde.2005.02.021
Reference: [7] Dubins, L.: On curves of minimal lengths with a constrains on average curvature and with prescribed initial and terminal positions and tangents..Am. J. Math. 79 (1957), 3, 497. 10.2307/2372560
Reference: [8] Hilgert, J., Hofmann, K., Lawson, J.: Controllability of systems on a nilpotent Lie group..Beitrage Algebra Geometrie 20 (1985), 185-190. MR 0803388
Reference: [9] Isidori, A.: Nonlinear Control Systems..Springer-Verlag, 1995. Zbl 0931.93005, MR 1410988, 10.1007/978-1-84628-615-5
Reference: [10] Jurdjevic, V.: Geometric Control Theory..Cambridge University Press, 1997. Zbl 1138.93005, MR 1425878, 10.1017/cbo9780511530036
Reference: [11] Jurdjevic, V.: Optimal control problem on Lie groups: crossroads between geometry and mechanics..In: Geometry of Feedback and Optimal Control (B. Jakubczyk and W. Respondek, eds.), New York, Marcel Dekker 1997. MR 1493016
Reference: [12] Jurdjevic, V., Kupka, I.: Control systems on semi-simple Lie groups and their homogeneous spaces..Ann. Inst. Fourier, Grenoble 31 (1981), 151-179. Zbl 0453.93011, MR 0644347, 10.5802/aif.853
Reference: [13] Jurdjevic, V., Sussmann, H.: Control systems on Lie groups..J. Differential Equations 12 (1972), 313-329. Zbl 0237.93027, MR 0331185, 10.1016/0022-0396(72)90035-6
Reference: [14] Lobry, C.: Controlabilite des systemes non lineaires..SIAM J. Control Optim. 8 (1970), 4, 573-605. Zbl 0476.93015, MR 0271979, 10.1137/0308042
Reference: [15] Ljapin, E.: Semigroups..Trans. Math. Monographs 3, American Mathematical Society 1963. MR 0167545, 10.1090/trans2/027/17
Reference: [16] Mittenhuber, D.: Controllability of systems on solvable Lie groups: the generic case..J. Dynam. Control Systems 7 (2001), 61-75. Zbl 1022.22006, MR 1817330, 10.1023/a:1026697622549
Reference: [17] Sachkov, Y.L.: Controllability of right-invariant systems on solvable Lie groups..J. Dynam. Control Systems 3 (1997), 531-564. Zbl 0991.93015, MR 1481626, 10.1007/bf02463282
Reference: [18] Sachkov, Y.L.: Controllability of invariant systems on Lie groups and homogeneous spaces..Dynamical systems 8, J. Math. Sci. (New York), 100 (2000), 4, 2355-2427. Zbl 1073.93511, MR 1776551, 10.1007/s10958-000-0002-8
Reference: [19] Martin, L. San, Tonelli, P.: Semigroup actions on homogeneous spaces..Semigroup Forum 14 (1994), 1-30. MR 1301552
Reference: [20] Sussmann, H.: Lie brackets and local controllability: A sufficient condition for scalar-input systems..SIAM J. Control Optim. 21 (1983), 5, 686-713. Zbl 0523.49026, MR 0710995, 10.1137/0321042
Reference: [21] Sussmann, H.: A general theorem on local controllability..SIAM J. Control Optim. 25 (1987), 158-194. Zbl 0629.93012, MR 0872457, 10.1137/0325011
Reference: [22] Sussmann, H., Willems, C.: 300 years of optimal control: From the brachystochrone to the maximum principle..IEEE Constrol Systems Magazine 17 (1997), 3, 32-44. Zbl 1014.49001, 10.1109/37.588098
.

Files

Files Size Format View
Kybernetika_52-2016-6_1.pdf 329.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo