Previous |  Up |  Next

Article

Title: Defects and transformations of quasi-copulas (English)
Author: Dibala, Michal
Author: Saminger-Platz, Susanne
Author: Mesiar, Radko
Author: Klement, Erich Peter
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 6
Year: 2016
Pages: 848-865
Summary lang: English
.
Category: math
.
Summary: Six different functions measuring the defect of a quasi-copula, i. e., how far away it is from a copula, are discussed. This is done by means of extremal non-positive volumes of specific rectangles (in a way that a zero defect characterizes copulas). Based on these defect functions, six transformations of quasi-copulas are investigated which give rise to six different partitions of the set of all quasi-copulas. For each of these partitions, each equivalence class contains exactly one copula being a fixed point of the transformation under consideration. Finally, an application to the construction of so-called imprecise copulas is given. (English)
Keyword: copula
Keyword: quasi-copula
Keyword: transformation of quasi-copulas
Keyword: imprecise copula
MSC: 26B25
MSC: 26B35
MSC: 60E05
MSC: 62E10
MSC: 62H10
idZBL: Zbl 06707377
idMR: MR3607851
DOI: 10.14736/kyb-2016-6-0848
.
Date available: 2017-02-13T11:40:20Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145994
.
Reference: [1] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions: Triangular Norms and Copulas..World Scientific, Singapore 2006. Zbl 1100.39023, MR 2222258, 10.1142/9789812774200
Reference: [2] Alsina, C., Nelsen, R. B., Schweizer, B.: On the characterization of a class of binary operations on distribution functions..Statist. Probab. Lett. 17 (1993), 85-89. Zbl 0798.60023, MR 1223530, 10.1016/0167-7152(93)90001-y
Reference: [3] Alvoni, E., Papini, P. L., Spizzichino, F.: On a class of transformations of copulas and quasi-copulas..Fuzzy Sets and Systems 160 (2009), 334-343. Zbl 1175.62045, MR 2473107, 10.1016/j.fss.2008.03.025
Reference: [4] Birkhoff, G.: Lattice Theory..American Mathematical Society, Providence 1973. Zbl 0537.06001, MR 0227053
Reference: [5] Clifford, A. H.: Naturally totally ordered commutative semigroups..Amer. J. Math. 76 (1954), 631-646. MR 0062118, 10.2307/2372706
Reference: [6] Baets, B. De: Quasi-copulas: A bridge between fuzzy set theory and probability theory..In: Integrated Uncertainty Management and Applications. Selected Papers Based on the Presentations at the 2010 International Symposium on Integrated Uncertainty Managment and Applications (IUM 2010) (V.-N. Huynh, Y. Nakamori, J. Lawry, and M. Inuiguchi, eds.), Ishikawa 2010, p. 55. Springer, Berlin 2010. 10.1007/978-3-642-11960-6_6
Reference: [7] Baets, B. De, Meyer, H. De, D{í}az, S.: On an idempotent transformation of aggregation functions and its application on absolutely continuous {A}rchimedean copulas..Fuzzy Sets and Systems 160 (2009), 733-751. Zbl 1175.62046, MR 2493272, 10.1016/j.fss.2008.04.001
Reference: [8] Baets, B. De, Janssens, S., Meyer, H. De: On the transitivity of a parametric family of cardinality-based similarity measures..Internat. J. Approx. Reason. 50 (2009), 104-116. Zbl 1191.68706, MR 2519040, 10.1016/j.ijar.2008.03.006
Reference: [9] Schuymer, B. De, Meyer, H. De, Baets, B. De: Cycle-transitive comparison of independent random variables..J. Multivariate Anal. 96 (2005), 352-373. Zbl 1087.60018, MR 2204983, 10.1016/j.jmva.2004.10.011
Reference: [10] D{í}az, S., Montes, S., Baets, B. De: Transitivity bounds in additive fuzzy preference structures..IEEE Trans. Fuzzy Systems 15 (2007), 275-286. 10.1109/tfuzz.2006.880004
Reference: [11] Dolati, A., Mohseni, S., Úbeda-Flores, M.: Some results on a transformation of copulas and quasi-copulas..Inform. Sci. 257 (2014), 176-182. Zbl 1321.62053, MR 3131786, 10.1016/j.ins.2013.09.023
Reference: [12] Durante, F., Sarkoci, P., Sempi, C.: Shuffles of copulas..J. Math. Anal. Appl. 352 (2009), 914-921. Zbl 1160.60307, MR 2501937, 10.1016/j.jmaa.2008.11.064
Reference: [13] Durante, F., Sempi, C.: Copula and semicopula transforms.. Zbl 1078.62055, 10.1155/ijmms.2005.645
Reference: [14] Durante, F., Sempi, C.: Principles of Copula Theory..CRC Press, Boca Raton 2015. MR 3443023, 10.1201/b18674
Reference: [15] Fuchs, S., Schmidt, K. D.: Bivariate copulas: transformations, asymmetry and measures of concordance..Kybernetika 50 (2014), 109-125. MR 3195007, 10.14736/kyb-2014-1-0109
Reference: [16] Genest, C., Quesada-Molina, J. J., Rodríguez-Lallena, J. A., Sempi, C.: A characterization of quasi-copulas..J. Multivariate Anal. 69 (1999), 193-205. Zbl 0935.62059, MR 1703371, 10.1006/jmva.1998.1809
Reference: [17] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions..Cambridge University Press, Cambridge 2009. Zbl 1206.68299, MR 2538324, 10.1017/cbo9781139644150
Reference: [18] Hájek, P., Mesiar, R.: On copulas, quasicopulas and fuzzy logic..Soft Computing 12 (2008), 1239-1243. Zbl 1152.03018, 10.1007/s00500-008-0286-z
Reference: [19] Janssens, S., Baets, B. De, Meyer, H. De: Bell-type inequalities for commutative quasi-copulas..Fuzzy Sets and Systems 148 (2004), 263-278. MR 2100199, 10.1016/j.fss.2004.03.015
Reference: [20] Kalická, J.: On some construction methods for 1-Lipschitz aggregation functions..Fuzzy Sets and Systems 160 (2009), 726-732. Zbl 1175.62047, MR 2493271, 10.1016/j.fss.2008.06.017
Reference: [21] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096, 10.1007/978-94-015-9540-7
Reference: [22] Klement, E. P., Mesiar, R., Pap, E.: Invariant copulas..Kybernetika 38 (2002), 275-285. Zbl 1264.62045, MR 1944309
Reference: [23] Klement, E. P., Mesiar, R., Pap, E.: Transformations of copulas..Kybernetika 41 (2005), 425-436. Zbl 1243.62019, MR 2180355
Reference: [24] Ling, C. M.: Representation of associative functions..Publ. Math. Debrecen 12 (1965), 189-212. Zbl 0137.26401, MR 0190575
Reference: [25] Montes, I., Miranda, E., Montes, S.: Decision making with imprecise probabilities and utilities by means of statistical preference and stochastic dominance..European J. Oper. Res. 2342 (2014), 209-220. Zbl 1305.91106, MR 3141610, 10.1016/j.ejor.2013.09.013
Reference: [26] Montes, I., Miranda, E., Pelessoni, R., Vicig, P.: Sklar's theorem in an imprecise setting..Fuzzy Sets and Systems 278 (2015), 48-66. MR 3383206, 10.1016/j.fss.2014.10.007
Reference: [27] Nelsen, R. B.: An Introduction to Copulas. Second edition..Springer, New York 2006. MR 2197664, 10.1007/0-387-28678-0
Reference: [28] Nelsen, R. B., Quesada-Molina, J. J., Rodríguez-Lallena, J. A., Úbeda-Flores, M.: Some new properties of quasi-copulas..In: Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, edis.), Kluwer Academic Publishers, Dordrecht 2002, pp. 187-194. Zbl 1135.62339, MR 2058992, 10.1007/978-94-017-0061-0_20
Reference: [29] Nelsen, R. B., Úbeda-Flores, M.: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas..Comptes Rendus Mathematique 341 (2005), 583-586. Zbl 1076.62053, MR 2182439, 10.1016/j.crma.2005.09.026
Reference: [30] Pelessoni, R., Vicig, P., Montes, I., Miranda, E.: Imprecise copulas and bivariate stochastic orders..In: Proc. EUROFUSE 2013, Oviedo 2013, pp. 217-224.
Reference: [31] Sainio, E., Turunen, E., Mesiar, R.: A characterization of fuzzy implications generated by generalized quantifiers..Fuzzy Sets and Systems 159 (2008), 491-499. Zbl 1176.03013, MR 2388105, 10.1016/j.fss.2007.09.018
Reference: [32] Schweizer, B., Sklar, A.: Associative functions and abstract semigroups..Publ. Math. Debrecen 10 (1963), 69-81. MR 0170967
Reference: [33] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces..North-Holland, New York 1983. Zbl 0546.60010, MR 0790314
Reference: [34] Sklar, A.: Fonctions de répartition à $n$ dimensions et leurs marges..Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. MR 0125600
Reference: [35] Sklar, A.: Random variables, joint distribution functions, and copulas..Kybernetika 9 (1973), 449-460. Zbl 0292.60036, MR 0345164
Reference: [36] Walley, P.: Statistical Reasoning with Imprecise Probabilities..Chapman and Hall, London 1991. Zbl 0732.62004, MR 1145491
.

Files

Files Size Format View
Kybernetika_52-2016-6_2.pdf 753.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo