Previous |  Up |  Next

Article

Title: Caristi's fixed point theorem and its equivalences in fuzzy metric spaces (English)
Author: Abbasi, Naser
Author: Mottaghi Golshan, Hamid
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 6
Year: 2016
Pages: 929-942
Summary lang: English
.
Category: math
.
Summary: In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided. (English)
Keyword: fuzzy metric space
Keyword: Ekeland variational principle
Keyword: Caristi's fixed point theorem
Keyword: Takahashi's maximization theorem
MSC: 47H10
MSC: 58E30
idZBL: Zbl 06707381
idMR: MR3607855
DOI: 10.14736/kyb-2016-6-0929
.
Date available: 2017-02-13T11:46:27Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145998
.
Reference: [1] Altun, I., Mihet, D.: Ordered non-archimedean fuzzy metric spaces and some fixed point results..Fixed Point Theory Appl. 2010, Art. ID 782680, 11 pp. Zbl 1191.54033, MR 2595842, 10.1155/2010/782680
Reference: [2] Aubin, J.-P.: Optima and equilibria. An introduction to nonlinear analysis. Translated from the French by Stephen Wilson. Second edition..Springer-Verlag, Graduate Texts in Mathematics 149, Berlin 1998. MR 1729758
Reference: [3] Bae, J. S., Cho, E. W., Yeom, S. H.: A generalization of the Caristi-Kirk fixed point theorem and its applications to mapping theorems..J. Korean Math. Soc. 31 (1994), 1, 29-48. MR 1269448
Reference: [4] Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales..Fundamenta Mathematicae 3 (1922), 1, 133-181. 10.4064/fm-3-1-133-181
Reference: [5] Brøndsted, A.: Fixed points and partial orders..Proc. Amer. Math. Soc. 60 (1976), 365-366. Zbl 0385.54030, MR 0417867, 10.1090/s0002-9939-1976-0417867-x
Reference: [6] Browder, F. E.: On a theorem of Caristi and Kirk..In: Proc. Sem. Fixed point theory and its applications Dalhousie Univ., Halifax, 1975), Academic Press, New York 1976, pp. 23-27. Zbl 0379.54016, MR 0461474
Reference: [7] Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions..Trans. Amer. Math. Soc. 215 (1976), 241-251. Zbl 0305.47029, MR 0394329, 10.1090/s0002-9947-1976-0394329-4
Reference: [8] Caristi, J., Kirk, W. A.: Geometric fixed point theory and inwardness conditions..In: Proc. Conf. The geometry of metric and linear spaces, Michigan State Univ., East Lansing 1974), Lecture Notes in Math. 490, Springer, Berlin 1975, pp. 74-83. Zbl 0315.54052, MR 0399968, 10.1007/bfb0081133
Reference: [9] Chang, S. S., Luo, Q.: Caristi's fixed point theorem for fuzzy mappings and Ekeland's variational principle..Fuzzy Sets and Systems 64 (1994), 1, 119-125. Zbl 0842.54041, MR 1281293, 10.1016/0165-0114(94)90014-0
Reference: [10] Ekeland, I.: Sur les problèmes variationnels..C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A1057-A1059. Zbl 0259.49027, MR 0310670
Reference: [11] Ekeland, I.: On the variational principle..J. Math. Anal. Appl. 47 (1974), 324-353. Zbl 0286.49015, MR 0346619, 10.1016/0022-247x(74)90025-0
Reference: [12] Ekeland, I.: Nonconvex minimization problems..Bull. Amer. Math. Soc. 1 (1979), 3, 443-474. Zbl 0441.49011, MR 0526967, 10.1090/s0273-0979-1979-14595-6
Reference: [13] George, A., Veeramani, P.: On some results in fuzzy metric spaces..Fuzzy Sets and Systems 64 (1994), 3, 395-399. Zbl 0843.54014, MR 1289545, 10.1016/0165-0114(94)90162-7
Reference: [14] George, A., Veeramani, P.: Some theorems in fuzzy metric spaces..J. Fuzzy Math. 3 (1995), 4, 933-940. Zbl 0870.54007, MR 1367026
Reference: [15] Grabiec, M.: Fixed points in fuzzy metric spaces..Fuzzy Sets and Systems 27 (1988), 3, 385-389. Zbl 0664.54032, MR 0956385, 10.1016/0165-0114(88)90064-4
Reference: [16] Gregori, V., Miñana, J.-J., Morillas, S.: Some questions in fuzzy metric spaces..Fuzzy Sets and Systems 204 (2012), 71-85. Zbl 1259.54001, MR 2950797, 10.1016/j.fss.2011.12.008
Reference: [17] Gregori, V., Morillas, S., Sapena, A.: On a class of completable fuzzy metric spaces..Fuzzy Sets and Systems 161 (2010), 16, 2193-2205. Zbl 1201.54011, MR 2652720, 10.1016/j.fss.2010.03.013
Reference: [18] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications..Fuzzy Sets and Systems 170 (2011), 95-111. Zbl 1210.94016, MR 2775611, 10.1016/j.fss.2010.10.019
Reference: [19] Gregori, V., Romaguera, S.: On completion of fuzzy metric spaces..Fuzzy Sets and Systems 130 (2002), 3, 399-404. Zbl 1010.54002, MR 1928435, 10.1016/s0165-0114(02)00115-x
Reference: [20] Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces..Fuzzy sets and systems 144 (2004), 3, 411-420. Zbl 1057.54010, MR 2061403, 10.1016/s0165-0114(03)00161-1
Reference: [21] Hadžić, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces..Kluwer Academic Publishers, Mathematics and its Applications 536, Dordrecht 2001. Zbl 1265.54127, MR 1896451, 10.1007/978-94-017-1560-7
Reference: [22] Jung, J. S., Cho, Y. J., Kang, S. M., Chang, S.-S.: Coincidence theorems for set-valued mappings and Ekeland's variational principle in fuzzy metric spaces..Fuzzy Sets and Systems 79 (1996), 2, 239-250. Zbl 0867.54018, MR 1388395, 10.1016/0165-0114(95)00084-4
Reference: [23] Jung, J. S., Cho, Y. J., Kim, J. K.: Minimization theorems for fixed point theorems in fuzzy metric spaces and applications..Fuzzy Sets and Systems 61 (1994), 2, 199-207. Zbl 0845.54004, MR 1262469, 10.1016/0165-0114(94)90234-8
Reference: [24] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Trends in Logic-Studia Logica Library 8, Dordrecht 2000. Zbl 1087.20041, MR 1790096, 10.1007/978-94-015-9540-7
Reference: [25] Kramosil, I., Michálek, J.: Fuzzy metrics and statistical metric spaces..Kybernetika 11 (1975), 5, 336-344. Zbl 0319.54002, MR 0410633
Reference: [26] Lee, G. M., Lee, B. S., Jung, J. S., Chang, S.-S.: Minimization theorems and fixed point theorems in generating spaces of quasi-metric family..Fuzzy Sets and Systems 101 (1999), 1, 143-152. Zbl 0986.54015, MR 1658940, 10.1016/s0165-0114(97)00034-1
Reference: [27] Menger, K.: Statistical metrics..Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537. Zbl 0063.03886, MR 0007576, 10.1073/pnas.28.12.535
Reference: [28] Radu, V.: Some remarks on the probabilistic contractions on fuzzy Menger spaces..Automat. Comput. Appl. Math. 11 (2003), 1, 125-131. MR 2428258
Reference: [29] Rodríguez-López, J., Romaguera, S.: The {H}ausdorff fuzzy metric on compact sets..Fuzzy Sets and Systems 147 (2004), 2, 273 -283. Zbl 1069.54009, MR 2089291, 10.1016/j.fss.2003.09.007
Reference: [30] Schweizer, B., Sklar, A.: Statistical metric spaces..Pacific J. Math. 10 (1960), 313-334. Zbl 0136.39301, MR 0115153, 10.2140/pjm.1960.10.313
Reference: [31] Schweizer, B., Sklar, A.: Probabilistic metric spaces. Zbl 0546.60010
Reference: [32] Suzuki, T.: On Downing-Kirk's theorem..J. Math. Anal. Appl. 286 (2003), 2, 453-458. Zbl 1042.47036, MR 2008843, 10.1016/s0022-247x(03)00470-0
Reference: [33] Suzuki, T.: Generalized Caristi's fixed point theorems by Bae and others..J. Math. Anal. Appl. 302 (2005), 2, 502-508. Zbl 1059.54031, MR 2107850, 10.1016/j.jmaa.2004.08.019
Reference: [34] Suzuki, T., Takahashi, W.: Fixed point theorems and characterizations of metric completeness..Topol. Methods Nonlinear Anal. 8 (1997), 2, 371-382. Zbl 0902.47050, MR 1483635, 10.12775/TMNA.1996.040
Reference: [35] Takahashi, W.: Existence theorems generalizing fixed point theorems for multivalued mappings..In: Fixed Point Theory and Aplications Marseille, 1989), Pitman Res. Notes Math. Ser. 252, Longman Sci. Tech., Harlow 1991, pp. 397-406. Zbl 0760.47029, MR 1122847
Reference: [36] Takahashi, W.: Nonlinear functional analysis..Yokohama Publishers, Yokohama 2000. Zbl 0997.47002, MR 1864294
Reference: [37] Zhu, J., Zhong, C.-K., Wang, G.-P.: An extension of ekeland's variational principle in fuzzy metric space and its applications..Fuzzy Sets and Systems 108 (1999), 3, 353-363. Zbl 0946.49017, MR 1718330, 10.1016/s0165-0114(97)00333-3
.

Files

Files Size Format View
Kybernetika_52-2016-6_6.pdf 338.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo