Title:
|
Bounds on tail probabilities for negative binomial distributions (English) |
Author:
|
Harremoës, Peter |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
52 |
Issue:
|
6 |
Year:
|
2016 |
Pages:
|
943-966 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we derive various bounds on tail probabilities of distributions for which the generated exponential family has a linear or quadratic variance function. The main result is an inequality relating the signed log-likelihood of a negative binomial distribution with the signed log-likelihood of a Gamma distribution. This bound leads to a new bound on the signed log-likelihood of a binomial distribution compared with a Poisson distribution that can be used to prove an intersection property of the signed log-likelihood of a binomial distribution compared with a standard Gaussian distribution. All the derived inequalities are related and they are all of a qualitative nature that can be formulated via stochastic domination or a certain intersection property. (English) |
Keyword:
|
tail probability |
Keyword:
|
exponential family |
Keyword:
|
signed log-likelihood |
Keyword:
|
variance function |
Keyword:
|
inequalities |
MSC:
|
60E15 |
MSC:
|
60F10 |
MSC:
|
62E17 |
idZBL:
|
Zbl 06707382 |
idMR:
|
MR3607856 |
DOI:
|
10.14736/kyb-2016-6-0943 |
. |
Date available:
|
2017-02-13T11:47:13Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145999 |
. |
Reference:
|
[1] Alfers, D., Dinges, H.: A normal approximation for beta and gamma tail probabilities..Z. Wahrscheinlichkeitstheory verw. Geb. 65 (1984), 3, 399-420. Zbl 0506.62011, MR 0731229, 10.1007/bf00533744 |
Reference:
|
[2] Bahadur, R. R.: Some approximations to the binomial distribution function..Ann. Math. Statist. 31 (1960), 43-54. Zbl 0092.35203, MR 0120675, 10.1214/aoms/1177705986 |
Reference:
|
[3] Bahadur, R. R., Rao, R. R.: On deviation of the sample mean..Ann. Math. Statist. 31 (1960), 4, 1015-1027. MR 0117775, 10.1214/aoms/1177705674 |
Reference:
|
[4] Barndorff-Nielsen, O. E.: A note on the standardized signed log likelihood ratio..Scand. J. Statist. 17 (1990), 2, 157-160. Zbl 0716.62021, MR 1085928 |
Reference:
|
[5] Györfi, L., Harremoës, P., Tusnády, G.: Gaussian approximation of large deviation probabilities..http://www.harremoes.dk/Peter/ITWGauss.pdf, 2012. |
Reference:
|
[6] Harremoës, P.: Mutual information of contingency tables and related inequalities..In: Proc. ISIT 2014, IEEE 2014, pp. 2474-2478. 10.1109/isit.2014.6875279 |
Reference:
|
[7] Harremoës, P., Tusnády, G.: Information divergence is more $\chi^2$-distributed than the $\chi^2$-statistic..In: International Symposium on Information Theory (ISIT 2012) (Cambridge, Massachusetts), IEEE 2012, pp. 538-543. 10.1109/isit.2012.6284247 |
Reference:
|
[8] Letac, G., Mora, M.: Natural real exponential families with cubic variance functions..Ann. Stat. 18 (1990), 1, 1-37. Zbl 0714.62010, MR 1041384, 10.1214/aos/1176347491 |
Reference:
|
[9] Morris, C.: Natural exponential families with quadratic variance functions..Ann. Statist. 10 (1982), 65-80. Zbl 0521.62014, MR 0642719, 10.1214/aos/1176345690 |
Reference:
|
[10] Reiczigel, J., Rejtő, L., Tusnády, G.: A sharpning of Tusnády's inequality..arXiv: 1110.3627v2, 2011. |
Reference:
|
[11] Zubkov, A. M., Serov, A. A.: A complete proof of universal inequalities for the distribution function of the binomial law..Theory Probab. Appl. 57 (2013), 3, 539-544. Zbl 1280.60016, MR 3196787, 10.1137/s0040585x97986138 |
. |