Previous |  Up |  Next

Article

Title: Bounds on tail probabilities for negative binomial distributions (English)
Author: Harremoës, Peter
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 6
Year: 2016
Pages: 943-966
Summary lang: English
.
Category: math
.
Summary: In this paper we derive various bounds on tail probabilities of distributions for which the generated exponential family has a linear or quadratic variance function. The main result is an inequality relating the signed log-likelihood of a negative binomial distribution with the signed log-likelihood of a Gamma distribution. This bound leads to a new bound on the signed log-likelihood of a binomial distribution compared with a Poisson distribution that can be used to prove an intersection property of the signed log-likelihood of a binomial distribution compared with a standard Gaussian distribution. All the derived inequalities are related and they are all of a qualitative nature that can be formulated via stochastic domination or a certain intersection property. (English)
Keyword: tail probability
Keyword: exponential family
Keyword: signed log-likelihood
Keyword: variance function
Keyword: inequalities
MSC: 60E15
MSC: 60F10
MSC: 62E17
idZBL: Zbl 06707382
idMR: MR3607856
DOI: 10.14736/kyb-2016-6-0943
.
Date available: 2017-02-13T11:47:13Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145999
.
Reference: [1] Alfers, D., Dinges, H.: A normal approximation for beta and gamma tail probabilities..Z. Wahrscheinlichkeitstheory verw. Geb. 65 (1984), 3, 399-420. Zbl 0506.62011, MR 0731229, 10.1007/bf00533744
Reference: [2] Bahadur, R. R.: Some approximations to the binomial distribution function..Ann. Math. Statist. 31 (1960), 43-54. Zbl 0092.35203, MR 0120675, 10.1214/aoms/1177705986
Reference: [3] Bahadur, R. R., Rao, R. R.: On deviation of the sample mean..Ann. Math. Statist. 31 (1960), 4, 1015-1027. MR 0117775, 10.1214/aoms/1177705674
Reference: [4] Barndorff-Nielsen, O. E.: A note on the standardized signed log likelihood ratio..Scand. J. Statist. 17 (1990), 2, 157-160. Zbl 0716.62021, MR 1085928
Reference: [5] Györfi, L., Harremoës, P., Tusnády, G.: Gaussian approximation of large deviation probabilities..http://www.harremoes.dk/Peter/ITWGauss.pdf, 2012.
Reference: [6] Harremoës, P.: Mutual information of contingency tables and related inequalities..In: Proc. ISIT 2014, IEEE 2014, pp. 2474-2478. 10.1109/isit.2014.6875279
Reference: [7] Harremoës, P., Tusnády, G.: Information divergence is more $\chi^2$-distributed than the $\chi^2$-statistic..In: International Symposium on Information Theory (ISIT 2012) (Cambridge, Massachusetts), IEEE 2012, pp. 538-543. 10.1109/isit.2012.6284247
Reference: [8] Letac, G., Mora, M.: Natural real exponential families with cubic variance functions..Ann. Stat. 18 (1990), 1, 1-37. Zbl 0714.62010, MR 1041384, 10.1214/aos/1176347491
Reference: [9] Morris, C.: Natural exponential families with quadratic variance functions..Ann. Statist. 10 (1982), 65-80. Zbl 0521.62014, MR 0642719, 10.1214/aos/1176345690
Reference: [10] Reiczigel, J., Rejtő, L., Tusnády, G.: A sharpning of Tusnády's inequality..arXiv: 1110.3627v2, 2011.
Reference: [11] Zubkov, A. M., Serov, A. A.: A complete proof of universal inequalities for the distribution function of the binomial law..Theory Probab. Appl. 57 (2013), 3, 539-544. Zbl 1280.60016, MR 3196787, 10.1137/s0040585x97986138
.

Files

Files Size Format View
Kybernetika_52-2016-6_7.pdf 743.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo