Title:
|
A note on another construction of graphs with $4n+6$ vertices and cyclic automorphism group of order $4n$ (English) |
Author:
|
Daugulis, Peteris |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
53 |
Issue:
|
1 |
Year:
|
2017 |
Pages:
|
13-18 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The problem of finding minimal vertex number of graphs with a given automorphism group is addressed in this article for the case of cyclic groups. This problem was considered earlier by other authors. We give a construction of an undirected graph having $4n+6$ vertices and automorphism group cyclic of order $4n$, $n\ge 1$. As a special case we get graphs with $2^k+6$ vertices and cyclic automorphism groups of order $2^k$. It can revive interest in related problems. (English) |
Keyword:
|
graph |
Keyword:
|
automorphism group |
MSC:
|
05C25 |
MSC:
|
05C35 |
MSC:
|
05C75 |
MSC:
|
05E18 |
idZBL:
|
Zbl 06738495 |
idMR:
|
MR3636678 |
DOI:
|
10.5817/AM2017-1-13 |
. |
Date available:
|
2017-03-23T10:01:55Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146072 |
. |
Reference:
|
[1] Arlinghaus, W.C.: The classification of minimal graphs with given abelian automorphism group.Mem. Amer. Math. Soc. 57 (1985), no. 330, viii+86 pp. Zbl 0568.05031, MR 0803975 |
Reference:
|
[2] Babai, L.: On the minimum order of graphs with given group.Canad. Math. Bull. 17 (1974), 467–470. Zbl 0311.05120, MR 0406855, 10.4153/CMB-1974-082-9 |
Reference:
|
[3] Babai, L.: In Graham R.L.; Grotschel M.; Lovasz L., Handbook of Combinatorics I.n Graham R.L.; Grotschel M.; Lovasz L., Handbook of Combinatorics I, ch. Automorphism groups, isomorphism, reconstruction, pp. 1447–1540, North-Holland, 1995. MR 1373683 |
Reference:
|
[4] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language.J. Symbolic Comput. 24 (1997), 235–265. Zbl 0898.68039, MR 1484478, 10.1006/jsco.1996.0125 |
Reference:
|
[5] Bouwer, I.Z., Frucht, R.: In Jagdish N. Srivastava, A survey of combinatorial the. Jagdish N. Srivastava, A survey of combinatorial the, ch. Line-minimal graphs with cyclic group, pp. 53–69, North-Holland, 1973. |
Reference:
|
[6] Daugulis, P.: $10$-vertex graphs with cyclic automorphism group of order $4$.2014, http://arxiv.org/abs/1410.1163. |
Reference:
|
[7] Diestel, R.: Graph Theory.Graduate Texts in Mathematics, vol. 173, Springer-Verlag, Heidelberg, 2010. Zbl 1209.00049 |
Reference:
|
[8] Frucht, R.: Herstellung von Graphen mit vorgegebener abstrakter Gruppe.Compositio Math. (in German) 6 (1939), 239–250. MR 1557026 |
Reference:
|
[9] Harary, F.: Graph Theory.Addison-Wesley, Reading, MA, 1969. Zbl 0196.27202, MR 0256911 |
Reference:
|
[10] McKay, B.D., Piperno, A.: Practical Graph Isomorphism, II.J. Symbolic Comput. 60 (2013), 94–112. MR 3131381, 10.1016/j.jsc.2013.09.003 |
Reference:
|
[11] Sabidussi, G.: On the minimum order of graphs with given automorphism group.Monatsh. Math. 63 (2) (1959), 124–127. Zbl 0085.37901, MR 0104596, 10.1007/BF01299094 |
. |