Previous |  Up |  Next

Article

Title: A note on another construction of graphs with $4n+6$ vertices and cyclic automorphism group of order $4n$ (English)
Author: Daugulis, Peteris
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 1
Year: 2017
Pages: 13-18
Summary lang: English
.
Category: math
.
Summary: The problem of finding minimal vertex number of graphs with a given automorphism group is addressed in this article for the case of cyclic groups. This problem was considered earlier by other authors. We give a construction of an undirected graph having $4n+6$ vertices and automorphism group cyclic of order $4n$, $n\ge 1$. As a special case we get graphs with $2^k+6$ vertices and cyclic automorphism groups of order $2^k$. It can revive interest in related problems. (English)
Keyword: graph
Keyword: automorphism group
MSC: 05C25
MSC: 05C35
MSC: 05C75
MSC: 05E18
idZBL: Zbl 06738495
idMR: MR3636678
DOI: 10.5817/AM2017-1-13
.
Date available: 2017-03-23T10:01:55Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146072
.
Reference: [1] Arlinghaus, W.C.: The classification of minimal graphs with given abelian automorphism group.Mem. Amer. Math. Soc. 57 (1985), no. 330, viii+86 pp. Zbl 0568.05031, MR 0803975
Reference: [2] Babai, L.: On the minimum order of graphs with given group.Canad. Math. Bull. 17 (1974), 467–470. Zbl 0311.05120, MR 0406855, 10.4153/CMB-1974-082-9
Reference: [3] Babai, L.: In Graham R.L.; Grotschel M.; Lovasz L., Handbook of Combinatorics I.n Graham R.L.; Grotschel M.; Lovasz L., Handbook of Combinatorics I, ch. Automorphism groups, isomorphism, reconstruction, pp. 1447–1540, North-Holland, 1995. MR 1373683
Reference: [4] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language.J. Symbolic Comput. 24 (1997), 235–265. Zbl 0898.68039, MR 1484478, 10.1006/jsco.1996.0125
Reference: [5] Bouwer, I.Z., Frucht, R.: In Jagdish N. Srivastava, A survey of combinatorial the. Jagdish N. Srivastava, A survey of combinatorial the, ch. Line-minimal graphs with cyclic group, pp. 53–69, North-Holland, 1973.
Reference: [6] Daugulis, P.: $10$-vertex graphs with cyclic automorphism group of order $4$.2014, http://arxiv.org/abs/1410.1163.
Reference: [7] Diestel, R.: Graph Theory.Graduate Texts in Mathematics, vol. 173, Springer-Verlag, Heidelberg, 2010. Zbl 1209.00049
Reference: [8] Frucht, R.: Herstellung von Graphen mit vorgegebener abstrakter Gruppe.Compositio Math. (in German) 6 (1939), 239–250. MR 1557026
Reference: [9] Harary, F.: Graph Theory.Addison-Wesley, Reading, MA, 1969. Zbl 0196.27202, MR 0256911
Reference: [10] McKay, B.D., Piperno, A.: Practical Graph Isomorphism, II.J. Symbolic Comput. 60 (2013), 94–112. MR 3131381, 10.1016/j.jsc.2013.09.003
Reference: [11] Sabidussi, G.: On the minimum order of graphs with given automorphism group.Monatsh. Math. 63 (2) (1959), 124–127. Zbl 0085.37901, MR 0104596, 10.1007/BF01299094
.

Files

Files Size Format View
ArchMathRetro_053-2017-1_2.pdf 493.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo