Previous |  Up |  Next

Article

Title: New technique for solving univariate global optimization (English)
Author: Aaid, Djamel
Author: Noui, Amel
Author: Ouanes, Mohand
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 1
Year: 2017
Pages: 19-33
Summary lang: English
.
Category: math
.
Summary: In this paper, a new global optimization method is proposed for an optimization problem with twice differentiable objective function a single variable with box constraint. The method employs a difference of linear interpolant of the objective and a concave function, where the former is a continuous piecewise convex quadratic function underestimator. The main objectives of this research are to determine the value of the lower bound that does not need an iterative local optimizer. The proposed method is proven to have a finite convergence to locate the global optimum point. The numerical experiments indicate that the proposed method competes with another covering methods. (English)
Keyword: global optimization
Keyword: Branch and Bound method
Keyword: convex underestimation
Keyword: piecewise quadratic
Keyword: explicit solution
MSC: 90C26
MSC: 90C30
idZBL: Zbl 06738496
idMR: MR3636679
DOI: 10.5817/AM2017-1-19
.
Date available: 2017-03-23T10:04:04Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146073
.
Reference: [1] Aaid, D.: Étude numérique comparative entre des méthodes de résolution d’un problème de transport à quatre indices avec capacités.Thése de l'université de Constantine (2010), http://bu.umc.edu.dz/theses/math/AAI5587.pdf.
Reference: [2] Aaid, D., Noui, A., Le Thi, H.A., Zidna, A.: A modified classical algorithm ALPT4C for solving a capacitated four-index transportation problem.Acta Math. Vietnam. 37 (3) (2012), 379–390. Zbl 1297.90081, MR 3027228
Reference: [3] Aaid, D., Noui, A., Ouanes, M.: Piecewise quadratic underestimation for global optimization.JSLAROMAD II Tiziouzou. Algeria, 28 – 30 Octobre 2013 (2013).
Reference: [4] Aaid, D., Noui, A., Zidna, A., Ouanes, M.: A quadratic branch and bound with Alienor method for global optimization.MAGO'2014, Málaga, Spain, 1 – 4 September, 2014.
Reference: [5] Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, alpha BB, for general twice differentiable NLPs – II. Implementation and computational results.Internat. J. Comput. Appl. in Chem. Engrg. 29 (3) (1998), 1159–1179. MR 1365800, 10.1016/S0098-1354(98)00218-X
Reference: [6] Akrotirianakis, I.G., Floudas, C.A.: Computational experience with a new class of convex underestimators: box-constrained NLP problems.J. Global Optim. 29 (3) (2004), 249–264. Zbl 1133.90420, MR 2109552, 10.1023/B:JOGO.0000044768.75992.10
Reference: [7] Bendiab, O., Cherruault, Y.: A new method for global optimization in two dimensions.Int. J. Biomed. Comput. 38 (1) (1995), 71–73. 10.1016/0020-7101(94)01039-4
Reference: [8] Benneouala, T., Cherruault, Y.: Alienor method for global optimization with a large number of variables.Kybernetes 34 (7–8) (2005), 1104–1111. Zbl 1130.90397, 10.1108/03684920510605911
Reference: [9] Caratzoulas, S., Floudas, C.A.: A trigonometric convex underestimator for the base functions in Fourier space.J. Optim. Theory Appl. 124 (2) (2005), 336–362. MR 2130074, 10.1007/s10957-004-0940-2
Reference: [10] Cartis, C., Fowkes, J.M., Gould, N.I.M.: Branching and bounding improvements for global optimization algorithms with Lipschitz continuity properties.J. Global Optim. 61 (3) (2015), 429–457. Zbl 1318.90057, MR 3313179, 10.1007/s10898-014-0199-6
Reference: [11] Cherruault, Y., Mora, G.: Optimisation globale : théorie des courbes alpha-denses.Economica Paris, 2005.
Reference: [12] Chrysanthos, E., Gounaris, C., Floudas, A.: Tight convex underestimators for $C^2$-continuous problems. I. Univariate functions.J. Global Optim. 42 (1) (2008). MR 2425310
Reference: [13] Grosan, C., Abraham, A.: On a class of global optimization test functions.Neural Network World, http://falklands.globat.com/~softcomputing.net/nnw2009.pdf.
Reference: [14] Guettal, D., Ziadi, A.: Reducing transformation and global optimization..Appl. Math. Comput. 218 (2012), 5848–5860. Zbl 1256.65054, MR 2873062
Reference: [15] Guillez, A.: Alienor, fractal algorithm for multivariable minimization problems.Math. Comput. Modelling 14 (1990), 245–247. Zbl 0725.90046, 10.1016/0895-7177(90)90184-O
Reference: [16] Horst, R., Pardalos, P.M.: Handbook of Global Optimization.Kluwer Academic Publishers, Dordrecht, 1995. Zbl 0805.00009, MR 1377081
Reference: [17] Kvasov, D.E, Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative..Optim. Lett. 3 (2) (2009), 303–318. Zbl 1173.90544, MR 2472191, 10.1007/s11590-008-0110-9
Reference: [18] Le Thi, H.A., Ouanes, M.: Convex quadratic underestimation and branch and bound for univariate global optimization with one nonconvex constraint.RAIRO Oper. Res. 40 (2006), 285–302. Zbl 1180.90249, MR 2276160, 10.1051/ro:2006024
Reference: [19] Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives.SIAM J. Optim. 23 (1) (2013), 508–529. Zbl 1270.90049, MR 3033117, 10.1137/110859129
Reference: [20] Leslous, F., Marthon, P., Oukacha, B., Ouanes, M.: Nonconvex optimization based on DC programming and DCA in the search of a global optimum of a nonconvex function.J. Egyptian Math. Soc. (2015). DOI: http://dx.doi.org/10.1016/j.joems..08.002 10.1016/j.joems..08.002
Reference: [21] Noui, A., Aaid, D., Ouanes, M.: An efficient algorithm for the Bernstein polynomial approach to global optimization.JSLAROMAD II, Tiziouzou, Algeria, 2013, 28–30 Octobre 2013.
Reference: [22] Ouanes, M.: A combined descent gradient method and descritization method for convex SIP.Internat. J. Appl. Math. 25 (4) (2012), 503–513. MR 3113955
Reference: [23] Ouanes, M.: A new approach for nonconvex SIP.Internat. J. Appl. Math. 81 (3) (2012), 479–486. Zbl 1259.65093
Reference: [24] Ouanes, M.: The main diagonal method in C 1 global optimization problem.Internat. J. Appl. Math. 25 (5) (2012), 663–672. Zbl 1277.65047, MR 3086787
Reference: [25] Ouanes, M.: New underestimator for multivariate global optimization with box costraints.Internat. J. of Pure and Appl. Math. 84 (1) (2013), 73–83. 10.12732/ijpam.v84i1.5
Reference: [26] Ouanes, M., Le Thi, H.A., Trong, P.N., Zidna, A.: New quadratic lower bound for multivariate functions in global optimization.Math. Comput. Simulation 109 (2015), 197–211. MR 3282082, 10.1016/j.matcom.2014.04.013
Reference: [27] Pardalos, P.M., Romeijn, H.E.: Handbook of Global Optimization, Volume 2. Nonconvex Optimization and Its Applications.Springer, Boston–Dordrecht–London, 2002. MR 1919528
Reference: [28] Piyavskii, S.A.: An algorithm for finding the absolute extremum of a function.USSR Computational Mathematics and Mathematical Physics 12 (4) (1972), 57–67. MR 0317544, 10.1016/0041-5553(72)90115-2
Reference: [29] Rahal, M., Ziadi, A.: A new extention of Piyavski’s method to holder functions of sveral variables.Appl. Math. Comput. 218 (2012), 478–488. MR 2400670
Reference: [30] Sergeyev, Y.D.: A one-dimensional deterministic global minimization algorithm.Comput. Math. Math. Phys. 35 (5) (1995), 705–717. MR 1337015
Reference: [31] Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions.Math. Programming 81 (1), Ser. A (1998), 127–146. Zbl 0920.90133, MR 1617756, 10.1007/BF01584848
Reference: [32] Shpak, A.: Global optimization in one-dimensional case using analytically defined derivatives of objective function.Comput. Sci. J. Moldova 3 (8) (1995), 168–184. Zbl 0896.65046, MR 1485351
.

Files

Files Size Format View
ArchMathRetro_053-2017-1_3.pdf 621.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo