[3] Cameron, R. H., Storvick, D. A.: 
Some Banach algebras of analytic Feynman integrable functionals. Analytic Functions Proc. Conf. Kozubnik 1979, Lect. Notes Math. 798, Springer, Berlin (1980), 18-67. 
DOI 10.1007/bfb0097256 | 
MR 0577446 | 
Zbl 0439.28007 
[4] Cameron, R. H., Storvick, D. A.: 
Change of scale formulas for Wiener integral. Functional Integration with Emphasis on the Feynman Integral Proc. Workshop Sherbrooke 1986, Suppl. Rend. Circ. Mat. Palermo, II. Ser. (1988), 105-115. 
MR 0950411 | 
Zbl 0653.28005 
[8] Cho, D. H.: 
Analogues of conditional Wiener integrals with drift and initial distribution on a function space. Abstr. Appl. Anal. (2014), Article ID 916423, 12 pages. 
DOI 10.1155/2014/916423 | 
MR 3226236 
[14] Kim, B. S.: 
Relationship between the Wiener integral and the analytic Feynman integral of cylinder function. J. Chungcheong Math. Soc. 27 (2014), 249-260. 
DOI 10.14403/jcms.2014.27.2.249 
[16] Pierce, I. D.: 
On a Family of Generalized Wiener Spaces and Applications. Ph.D. Thesis, The University of Nebraska, Lincoln (2011). 
MR 2890101 
[18] Yoo, I., Chang, K. S., Cho, D. H., Kim, B. S., Song, T. S.: 
A change of scale formula for conditional Wiener integrals on classical Wiener space. J. Korean Math. Soc. 44 (2007), 1025-1050. 
DOI 10.4134/JKMS.2007.44.4.1025 | 
MR 2334543 | 
Zbl 1129.28014 
[20] Yoo, I., Skoug, D.: 
A change of scale formula for Wiener integrals on abstract Wiener spaces II. J. Korean Math. Soc. 31 (1994), 115-129. 
MR 1269456 | 
Zbl 0802.28009