Previous |  Up |  Next

Article

Title: Some fixed point theorems in generating spaces of quasi-metric family (English)
Author: Rashid, M.H.M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 3
Year: 2017
Pages: 161-177
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to introduce the concepts of compatible mappings and compatible mappings of type $(R)$ in non-Archimedean Menger probabilistic normed spaces and to study the existence problems of common fixed points for compatible mappings of type $(R)$, also, we give an applications by using the main theorems. (English)
Keyword: fixed point
Keyword: compatible mappings
Keyword: non-Archimedean Menger probabilistic normed spaces
MSC: 47H10
MSC: 54H25
idZBL: Zbl 06819523
idMR: MR3708770
DOI: 10.5817/AM2017-3-161
.
Date available: 2017-09-13T09:33:37Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146882
.
Reference: [1] Chang, S.S.: Fixed point theorem in problabilistic metric spaces with applications.Scientia Sinica (Series A) 26 (1983), 1144–1155. MR 0747108
Reference: [2] Chang, S.S.: On the theory of problabilistic metric spaces with applications.Acta Math. Sinica (N.S.) 1 (4) (1985), 366–377. MR 0867910, 10.1007/BF02564846
Reference: [3] Chang, S.S., Xiang, S.W.: Topological structure and metrization problem of probabilistic metric spaces and application.J. Qufu Norm. Univ. Nat. Sci. Ed. 16 (3) (1990), 1–8. MR 1078778
Reference: [4] Cho, Y.J., Park, K.S., Chang, S.S.: Fixed point theorems in metric spaces and probabilistic metric spaces.Internat. J. Math. Math. Sci. 19 (2) (1996), 243–252. Zbl 0843.47033, MR 1375985, 10.1155/S0161171296000348
Reference: [5] Drossos, C.A.: Stochastic Menger spaces and convergence in probability.Rev. Roumaine Math. Pures Appl. 22 (1977), 1069–1076. Zbl 0372.60014, MR 0467865
Reference: [6] Fan, J.X.: On the generalizations of Ekeland’s vartional principle and Caristi’s fixed point theorem.The 6th National Conference on Fixed point Theory Variational Inequalities and Probabilistic Metric Spaces Theory, Qingdao, China, 1993.
Reference: [7] He, P.J.: The variational principle in fuzzy metric spaces and its applications.Fuzzy Sets and Systems 45 (1992), 389–394. Zbl 0754.54005, MR 1154203, 10.1016/0165-0114(92)90157-Y
Reference: [8] Hegedus, M., Szilagyi, T.: Equivalence conditions and a new fixed point theorem in the theory of contraction mappings.Math. Japon. 25 (1) (1980), 147–157. MR 0571276
Reference: [9] Jungck, G.: Compatible maps and common fixed points.Internat. J. Math. Math. Sci. 9 (1986), 771–779. MR 0870534, 10.1155/S0161171286000935
Reference: [10] Koireng, M.M., Ningombam, L., Rohen, Y.: Common fixed points of compatible mappings of type $(R)$.Gen. Math. Notes 10 (1) (2012), 58–62.
Reference: [11] Menger, K.: Statistical metrics.Proc. Nat. Acad. Sci. USA 28 (1942), 535–537. Zbl 0063.03886, MR 0007576, 10.1073/pnas.28.12.535
Reference: [12] Rohen, Y., Singh, M.R., Shambhu, L.: Common fixed points of compatible mapping of type $(C)$ in Banach spaces.Proc. Math. Soc. 20 (2004), 77–87.
Reference: [13] Schweizer, B., Sklar, A.: Statistical metric spaces.Pacific J. Math. 10 (1960), 313–334. Zbl 0096.33203, MR 0115153, 10.2140/pjm.1960.10.313
Reference: [14] Schweizer, B., Sklar, A.: Probabilistic metric spaces.North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983. Zbl 0546.60010, MR 0790314
Reference: [15] Singh, B., Chauhan, M.S.: On common fixed points of four mappings.Bull. Calcutta Math. Soc. 88 (1996), 451–456. Zbl 0904.54031, MR 1630261
Reference: [16] Singh, S.P., Meade, B.A.: On common fixed point theorems.Bull. Austral. Math. Soc. 16 (1977), 49–53. Zbl 0351.54040, MR 0438318, 10.1017/S000497270002298X
Reference: [17] Tan, N.X.: Generalized probabilistic metric spaces and fixed point theorems.Math. Nachr. 129 (1986), 205–218. Zbl 0603.54049, MR 0864635, 10.1002/mana.19861290119
.

Files

Files Size Format View
ArchMathRetro_053-2017-3_4.pdf 524.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo