Previous |  Up |  Next

Article

Title: Invertible ideals and Gaussian semirings (English)
Author: Ghalandarzadeh, Shaban
Author: Nasehpour, Peyman
Author: Razavi, Rafieh
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 3
Year: 2017
Pages: 179-192
Summary lang: English
.
Category: math
.
Summary: In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as $(I + J)(I \cap J) = IJ$ for all ideals $I$, $J$ of $S$. In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family of semirings, the concepts of Prüfer and Gaussian semirings are equivalent. At last, we end this paper by giving a plenty of examples for proper Gaussian and Prüfer semirings. (English)
Keyword: semiring
Keyword: semiring polynomials
Keyword: Gaussian semiring
Keyword: cancellation ideals
Keyword: invertible ideals
MSC: 06D75
MSC: 13B25
MSC: 13F25
MSC: 16Y60
idZBL: Zbl 06819524
idMR: MR3708771
DOI: 10.5817/AM2017-3-179
.
Date available: 2017-09-13T09:35:35Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146883
.
Reference: [1] Arnold, J.T., Gilmer, R.: On the content of polynomials.Proc. Amer. Math. Soc. 40 (1) (1970), 556–562. MR 0252360, 10.1090/S0002-9939-1970-0252360-3
Reference: [2] Bazzoni, S., Glaz, S.: Gaussian properties of total rings of quotients.J. Algebra 310 (1) (2007), 180–193. Zbl 1118.13020, MR 2307788, 10.1016/j.jalgebra.2007.01.004
Reference: [3] Bourne, S.: The Jacobson radical of a semiring.Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 163–170. Zbl 0042.03201, MR 0041827, 10.1073/pnas.37.3.163
Reference: [4] Dale, L., Pitts, J.D.: Euclidean and Gaussian semirings.Kyungpook Math. J. 18 (1978), 17–22. Zbl 0399.16018, MR 0491842
Reference: [5] Dedekind, R.: Supplement XI to P.G. Lejeune Dirichlet: Vorlesung über Zahlentheorie 4 Aufl..ch. Über die Theorie der ganzen algebraiscen Zahlen, Druck und Verlag, Braunschweig, 1894. MR 0237283
Reference: [6] Eilenberg, S.: Automata, Languages, and Machines.vol. A, Academic Press, New York, 1974. Zbl 0317.94045, MR 0530382
Reference: [7] El Bashir, R., Hurt, J., Jančařík, A., Kepka, T.: Simple commutative semirings.J. Algebra 236 (2001), 277–306. Zbl 0976.16034, MR 1808355, 10.1006/jabr.2000.8483
Reference: [8] Gilmer, R.: Some applications of the Hilfsatz von Dedekind-Mertens.Math. Scand. 20 (1967), 240–244. MR 0236159, 10.7146/math.scand.a-10833
Reference: [9] Gilmer, R.: Multiplicative Ideal Theory.Marcel Dekker, New York, 1972. Zbl 0248.13001, MR 0427289
Reference: [10] Glazek, K.: A guide to the literature on semirings and their applications in mathematics and information sciences.Kluwer Academic Publishers, Dordrecht, 2002. Zbl 1072.16040, MR 2007485
Reference: [11] Golan, J.S.: Semirings and Their Applications.Kluwer Academic Publishers, Dordrecht, 1999. Zbl 0947.16034, MR 1746739
Reference: [12] Golan, J.S.: Power Algebras over Semirings: with Applications in Mathematics and Computer Science.vol. 488, Springer, 1999. Zbl 0947.16035, MR 1730722
Reference: [13] Hebisch, U., Weinert, H.J.: On Euclidean semirings.Kyungpook Math. J. 27 (1987), 61–88. Zbl 0645.16025, MR 0922411
Reference: [14] Hebisch, U., Weinert, H.J.: Semirings - Algebraic Theory and Applications in Computer Science.World Scientific, Singapore, 1998. Zbl 0934.16046, MR 1704233
Reference: [15] Kim, C.B.: A note on the localization in semirings.J. Sci. Inst. Kookmin Univ. 3 (1985), 13–19.
Reference: [16] Kurosh, A.G.: Lectures in General Algebra.Pergamon Press, Oxford, 1965, translated by A. Swinfen. Zbl 0123.00101, MR 0179235
Reference: [17] LaGrassa, S.: Semirings: Ideals and Polynomials.Ph.D. thesis, University of Iowa, 1995. MR 2692760
Reference: [18] Larsen, M.D., McCarthy, P.J.: Multiplicative Theory of Ideals.Academic Press, New York, 1971. Zbl 0237.13002, MR 0414528
Reference: [19] Naoum, A.G., Mijbass, A.S.: Weak cancellation modules.Kyungpook Math. J. 37 (1997), 73–82. Zbl 0882.13002, MR 1454770
Reference: [20] Nasehpour, P.: On the content of polynomials over semirings and its applications.J. Algebra Appl. 15 (5) (2016), 32, 1650088. MR 3479447, 10.1142/S0219498816500882
Reference: [21] Nasehpour, P.: Valuation semirings.J. Algebra Appl. 16 (11) (2018), 23, 1850073, arXiv:1509.03354.
Reference: [22] Nasehpour, P., Yassemi, S.: $M$-cancellation ideals.Kyungpook Math. J. 40 (2000), 259–263. Zbl 1020.13002, MR 1803117
Reference: [23] Noronha Galvão, M.L.: Ideals in the semiring $\mathbb{N}$.Portugal. Math. 37 (1978), 231–235. MR 0620304
Reference: [24] Prüfer, H.: Untersuchungen über Teilbarkeitseigenschaften in Körpern.J. Reine Angew. Math. 168 (1932), 1–36. Zbl 0004.34001, MR 1581355
Reference: [25] Smith, F.: Some remarks on multiplication modules.Arch. Math. (Basel) 50 (1988), 223–235. Zbl 0615.13003, MR 0933916, 10.1007/BF01187738
Reference: [27] Vandiver, H.S.: Note on a simple type of algebra in which cancellation law of addition does not hold.Bull. Amer. Math. Soc. 40 (1934), 914–920. MR 1562999, 10.1090/S0002-9904-1934-06003-8
.

Files

Files Size Format View
ArchMathRetro_053-2017-3_5.pdf 510.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo