Title:
|
Generic extensions of models of ZFC (English) |
Author:
|
Bukovský, Lev |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
58 |
Issue:
|
3 |
Year:
|
2017 |
Pages:
|
347-358 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The paper contains a self-contained alternative proof of my Theorem in Characterization of generic extensions of models of set theory, Fund. Math. 83 (1973), 35--46, saying that for models $M\subseteq N$ of ZFC with same ordinals, the condition $Apr_{M,N}(\kappa)$ implies that $N$ is a $\kappa$-C.C. generic extension of $M$. (English) |
Keyword:
|
inner model |
Keyword:
|
extension of an inner model |
Keyword:
|
$\kappa$-generic extension |
Keyword:
|
$\kappa$-C.C. generic extension |
Keyword:
|
$\kappa$-boundedness condition |
Keyword:
|
$\kappa$ approximation condition |
Keyword:
|
Boolean ultrapower |
Keyword:
|
Boolean valued model |
MSC:
|
03E40 |
MSC:
|
03E45 |
idZBL:
|
Zbl 06837070 |
idMR:
|
MR3708778 |
DOI:
|
10.14712/1213-7243.2015.209 |
. |
Date available:
|
2017-11-22T09:23:21Z |
Last updated:
|
2019-10-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146907 |
. |
Reference:
|
[1] Balcar B.: A theorem on supports in the theory of semisets.Comment. Math. Univ. Carolin. 14 (1973), 1–6. Zbl 0281.02060, MR 0340015 |
Reference:
|
[2] Balcar B., Štěpánek P.: Teorie množin.(Set Theory, Czech), Academia, Prague, 1986, second edition 2003. Zbl 0635.03039, MR 0911270 |
Reference:
|
[3] Bukovský L.: Ensembles génériques d'entiers.C.R. Acad. Sci. Paris 273 (1971), 753–755. Zbl 0231.02086, MR 0286647 |
Reference:
|
[4] Bukovský L.: Characterization of generic extensions of models of set theory.Fund. Math. 83 (1973), 35–46. Zbl 0344.02043, MR 0332477, 10.4064/fm-83-1-35-46 |
Reference:
|
[5] Friedman S.D., Fuchino S., Sakai H.: On the set-generic multiverse.preprint. |
Reference:
|
[6] Gaifman H.: Concerning measures on Boolean algebras.Pacific J. Math. 14 (1964), 61–73. Zbl 0127.02306, MR 0161952, 10.2140/pjm.1964.14.61 |
Reference:
|
[7] Jech T.: Set Theory.the third millenium edition, revised and expanded, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513 |
Reference:
|
[8] Kunen K.: Set Theory.Studies in Logic 34, College Publications, London, 2013. Zbl 0960.03033, MR 2905394 |
Reference:
|
[9] Laver R.: Certain very large cardinals are not created in small forcing extensions.Ann. Pure Appl. Logic 149 (2007), 1–6. Zbl 1128.03046, MR 2364192, 10.1016/j.apal.2007.07.002 |
Reference:
|
[10] Solovay R.: A model of set theory in which every set of reals is Lebesgue measurable.Ann. of Math. 92 (1970), 1–56. Zbl 0207.00905, MR 0265151, 10.2307/1970696 |
Reference:
|
[11] Vopěnka P.: General theory of $\nabla$-models.Comment. Math. Univ. Carolin. 8 (1967), 145–170. Zbl 0162.01701, MR 0214460 |
Reference:
|
[12] Vopěnka P., Balcar B.: On complete models of the set theory.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 839–841. Zbl 0177.01404, MR 0242659 |
Reference:
|
[13] Vopěnka P., Hájek P.: The Theory of Semisets.Academia, Prague, 1972. Zbl 0332.02064, MR 0444473 |
. |