Previous |  Up |  Next

Article

Title: Generic extensions of models of ZFC (English)
Author: Bukovský, Lev
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 3
Year: 2017
Pages: 347-358
Summary lang: English
.
Category: math
.
Summary: The paper contains a self-contained alternative proof of my Theorem in Characterization of generic extensions of models of set theory, Fund. Math. 83 (1973), 35--46, saying that for models $M\subseteq N$ of ZFC with same ordinals, the condition $Apr_{M,N}(\kappa)$ implies that $N$ is a $\kappa$-C.C. generic extension of $M$. (English)
Keyword: inner model
Keyword: extension of an inner model
Keyword: $\kappa$-generic extension
Keyword: $\kappa$-C.C. generic extension
Keyword: $\kappa$-boundedness condition
Keyword: $\kappa$ approximation condition
Keyword: Boolean ultrapower
Keyword: Boolean valued model
MSC: 03E40
MSC: 03E45
idZBL: Zbl 06837070
idMR: MR3708778
DOI: 10.14712/1213-7243.2015.209
.
Date available: 2017-11-22T09:23:21Z
Last updated: 2019-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146907
.
Reference: [1] Balcar B.: A theorem on supports in the theory of semisets.Comment. Math. Univ. Carolin. 14 (1973), 1–6. Zbl 0281.02060, MR 0340015
Reference: [2] Balcar B., Štěpánek P.: Teorie množin.(Set Theory, Czech), Academia, Prague, 1986, second edition 2003. Zbl 0635.03039, MR 0911270
Reference: [3] Bukovský L.: Ensembles génériques d'entiers.C.R. Acad. Sci. Paris 273 (1971), 753–755. Zbl 0231.02086, MR 0286647
Reference: [4] Bukovský L.: Characterization of generic extensions of models of set theory.Fund. Math. 83 (1973), 35–46. Zbl 0344.02043, MR 0332477, 10.4064/fm-83-1-35-46
Reference: [5] Friedman S.D., Fuchino S., Sakai H.: On the set-generic multiverse.preprint.
Reference: [6] Gaifman H.: Concerning measures on Boolean algebras.Pacific J. Math. 14 (1964), 61–73. Zbl 0127.02306, MR 0161952, 10.2140/pjm.1964.14.61
Reference: [7] Jech T.: Set Theory.the third millenium edition, revised and expanded, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513
Reference: [8] Kunen K.: Set Theory.Studies in Logic 34, College Publications, London, 2013. Zbl 0960.03033, MR 2905394
Reference: [9] Laver R.: Certain very large cardinals are not created in small forcing extensions.Ann. Pure Appl. Logic 149 (2007), 1–6. Zbl 1128.03046, MR 2364192, 10.1016/j.apal.2007.07.002
Reference: [10] Solovay R.: A model of set theory in which every set of reals is Lebesgue measurable.Ann. of Math. 92 (1970), 1–56. Zbl 0207.00905, MR 0265151, 10.2307/1970696
Reference: [11] Vopěnka P.: General theory of $\nabla$-models.Comment. Math. Univ. Carolin. 8 (1967), 145–170. Zbl 0162.01701, MR 0214460
Reference: [12] Vopěnka P., Balcar B.: On complete models of the set theory.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 839–841. Zbl 0177.01404, MR 0242659
Reference: [13] Vopěnka P., Hájek P.: The Theory of Semisets.Academia, Prague, 1972. Zbl 0332.02064, MR 0444473
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-3_7.pdf 290.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo