Previous |  Up |  Next

Article

Title: Absolute continuity with respect to a subset of an interval (English)
Author: Loukotová, Lucie
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 3
Year: 2017
Pages: 327-346
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to introduce a generalization of the classical absolute continuity to a relative case, with respect to a subset $M$ of an interval $I$. This generalization is based on adding more requirements to disjoint systems $\{(a_k, b_k)\}_K$ from the classical definition of absolute continuity -- these systems should be not too far from $M$ and should be small relative to some covers of $M$. We discuss basic properties of relative absolutely continuous functions and compare this class with other classes of generalized absolutely continuous functions. (English)
Keyword: absolute continuity
Keyword: quasi-uniformity
Keyword: acceptable mapping
MSC: 26A36
MSC: 26A46
idZBL: Zbl 06837069
idMR: MR3708777
DOI: 10.14712/1213-7243.2015.213
.
Date available: 2017-11-22T09:22:07Z
Last updated: 2019-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146908
.
Reference: [1] Bartle R.G.: Modern Theory of Integration.American Mathematical Society, Providence, RI, 2001. Zbl 0968.26001, MR 1817647
Reference: [2] Bogachev V.I.: Measure Theory I..Springer, Berlin, Heidelberg, 2007. MR 2267655
Reference: [3] Ene V.: Characterisations of VBG $\cap$ (N).Real Anal. Exch. 23 (1997-1998), no. 2, 611–630. MR 1639992
Reference: [4] Ene V.: Characterisations of VB$^{\ast}$G $\cap$ (N).Real Anal. Exch. 23 (1997-1998), no. 2, 571–600. MR 1639984
Reference: [5] Gong Z.: New descriptive characterisation of Henstock-Kurzweil integral.Southeast Asian Bull. Math., 2003, no. 27, 445–450. MR 2045557
Reference: [6] Gordon R.A.: A descriptive characterization of the generalized Riemann integral.Real Anal. Exch. 15 (1990), no. 1, 397–400. Zbl 0703.26009, MR 1042557
Reference: [7] Gordon R.A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.American Mathematical Society, Providence, RI, 1994. Zbl 0807.26004, MR 1288751
Reference: [8] Fletcher P., Lindgren W.F.: Quasi-uniform Spaces.Lecture Notes in Pure and Applied Mathematics, 77, Dekker, New York, 1982. Zbl 0583.54017, MR 0660063
Reference: [9] Isbell J.R.: Uniform Spaces.American Mathematical Society, Providence, RI, 1964. Zbl 0124.15601, MR 0170323
Reference: [10] Lee P.Y.: On $ {ACG}^{\ast}$ functions.Real Anal. Exch. 15 (1990), no. 2, 754–759. MR 1059436
Reference: [11] Lee P.Y.: Lanzhou Lectures on Henstock Integration.World Scientific, Singapore, 1989. Zbl 0699.26004, MR 1050957
Reference: [12] Njastad O.: On uniform spaces where all uniformly continuous functions are bounded.Monatsh. Math. 69 (1965), no. 2, 167–176. Zbl 0145.19502, MR 0178453, 10.1007/BF01298321
Reference: [13] Saks S.: Theory of the Integral.Warsawa, Lwów, 1937. Zbl 0017.30004
Reference: [14] Sworowski P.: On the uniform strong Lusin condition.Math. Slovaca 63 (2013), no. 2, 229-–242. Zbl 1324.26010, MR 3037065, 10.2478/s12175-012-0095-9
Reference: [15] Zhereby'ev Yu.A.: On the Denjoy-Luzin definitions of the function classes $ACG$, $ACG^{\ast}$, $VBG$, and $VBG^{\ast}$.Mathematical Notes 81 (2007), no. 2, 183–192. MR 2409272, 10.1134/S000143460701021X
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-3_6.pdf 352.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo