Title:
|
On the structure of universal differentiability sets (English) |
Author:
|
Dymond, Michael |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
58 |
Issue:
|
3 |
Year:
|
2017 |
Pages:
|
315-326 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A subset of $\mathbb R^{d}$ is called a universal differentiability set if it contains a point of differentiability of every Lipschitz function $f\colon\mathbb R^{d}\to \mathbb R$. We show that any universal differentiability set contains a `kernel' in which the points of differentiability of each Lipschitz function are dense. We further prove that no universal differentiability set may be decomposed as a countable union of relatively closed, non-universal differentiability sets. (English) |
Keyword:
|
differentiability |
Keyword:
|
Lipschitz functions |
Keyword:
|
universal differentiability set |
Keyword:
|
$\sigma$-porous set |
MSC:
|
46G05 |
MSC:
|
46T20 |
idZBL:
|
Zbl 06837068 |
idMR:
|
MR3708776 |
DOI:
|
10.14712/1213-7243.2015.218 |
. |
Date available:
|
2017-11-01T16:51:21Z |
Last updated:
|
2019-10-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146910 |
. |
Reference:
|
[1] Alberti G., Csörnyei M., Preiss D.: Differentiability of Lipschitz functions, structure of null sets, and other problems.Proceedings of the International Congress of Mathematicians, volume 3, Hindustan Book Agency, New Delhi, 2010, pp. 1379–1394. Zbl 1251.26010, MR 2827846 |
Reference:
|
[2] Bugeaud Y., Dodson M.M., Kristensen S.: Zero-infinity laws in Diophantine approximation.Q.J. Math. 56 (2005), no. 3, 311–320. Zbl 1204.11117, MR 2161245, 10.1093/qmath/hah043 |
Reference:
|
[3] Csörnyei M., Preiss D., Tišer J.: Lipschitz functions with unexpectedly large sets of nondifferentiability points.Abstr. Appl. Anal. 2005, no. 4, 361–373. Zbl 1098.26010, MR 2202486, 10.1155/AAA.2005.361 |
Reference:
|
[4] Doré M., Maleva O.: A compact null set containing a differentiability point of every Lipschitz function.Math. Ann. 351 (2011), no.3, 633–663. Zbl 1239.46035, MR 2854108, 10.1007/s00208-010-0613-4 |
Reference:
|
[5] Doré M., Maleva O.: A universal differentiability set in Banach spaces with separable dual.J. Funct. Anal. 261 (2011), no. 6, 1674–1710. Zbl 1230.46035, MR 2813484, 10.1016/j.jfa.2011.05.016 |
Reference:
|
[6] Doré M., Maleva O.: A compact universal differentiability set with Hausdorff dimension one.Israel J. Math. 191 (2012), no. 2, 889–900. Zbl 1281.46041, MR 3011499, 10.1007/s11856-012-0014-3 |
Reference:
|
[7] Dymond M.: Differentiability and negligible sets in Banach spaces.PhD Thesis, University of Birmingham, 2014. MR 3389522 |
Reference:
|
[8] Dymond M., Maleva O.: Differentiability inside sets with Minkowski dimension one.Michigan Math. J. 65 (2016), no. 3, 613–636. Zbl 1366.46029, MR 3542769, 10.1307/mmj/1472066151 |
Reference:
|
[9] Fowler T., Preiss D.: A simple proof of Zahorski's description of non-differentiability sets of Lipschitz functions.Real Anal. Exchange 34 (2009), no. 1, 127–138. Zbl 1179.26010, MR 2527127, 10.14321/realanalexch.34.1.0127 |
Reference:
|
[10] Grafakos L.: Classical Fourier Analysis.third edition, Graduate Texts in Mathematics, 249, Springer, New York, 2014. Zbl 1336.00075, MR 3243734, 10.1007/978-1-4939-1194-3 |
Reference:
|
[11] Hájek P., Johanis M.: Smooth Analysis in Banach Spaces.De Gruyter Series in Nonlinear Analysis and Applications, 19, Walter de Gruyter, Berlin, 2014. Zbl 1329.00102, MR 3244144 |
Reference:
|
[12] Ives D.J., Preiss D.: Not too well differentiable Lipschitz isomorphisms.Israel J. Math. 115 (2000), no. 1, 343–353. Zbl 0951.46019, MR 1749687, 10.1007/BF02810595 |
Reference:
|
[13] Maleva O., Preiss D.: Cone unrectifiable sets and non-differentiability of Lipschitz functions.in preparation. |
Reference:
|
[14] Preiss D.: Differentiability of Lipschitz functions on Banach spaces.J. Funct. Anal. 91 (1990), no. 2, 312–345. Zbl 0872.46026, MR 1058975, 10.1016/0022-1236(90)90147-D |
Reference:
|
[15] Preiss D., Speight G.: Differentiability of Lipschitz functions in Lebesgue null sets.Invent. Math. 199 (2014), no. 2, 517–559. Zbl 1317.26011, MR 3302120, 10.1007/s00222-014-0520-5 |
Reference:
|
[16] Taylor S.J.: Introduction to Measure and Integration.Cambridge University Press, Cambridge, 1973. Zbl 0277.28001 |
Reference:
|
[17] Zahorski Z.: Sur l'ensemble des points de non-dérivabilité d'une fonction continue.Bull. Soc. Math. France 74 (1946), 147–178. Zbl 0061.11302, MR 0022592, 10.24033/bsmf.1381 |
Reference:
|
[18] Zajíček L.: Sets of $\sigma $-porosity and sets of $\sigma $-porosity $(q)$.Časopis Pěst. Mat. 101 (1976), no. 4, 350–359. Zbl 0341.30026, MR 0457731 |
Reference:
|
[19] Zelený M., Pelant J.: The structure of the $\sigma$-ideal of $\sigma$-porous sets.Comment. Math. Univ. Carolin. 45 (2004), no. 1, 37–72. MR 2076859 |
. |