Previous |  Up |  Next

Article

Title: On the structure of universal differentiability sets (English)
Author: Dymond, Michael
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 3
Year: 2017
Pages: 315-326
Summary lang: English
.
Category: math
.
Summary: A subset of $\mathbb R^{d}$ is called a universal differentiability set if it contains a point of differentiability of every Lipschitz function $f\colon\mathbb R^{d}\to \mathbb R$. We show that any universal differentiability set contains a `kernel' in which the points of differentiability of each Lipschitz function are dense. We further prove that no universal differentiability set may be decomposed as a countable union of relatively closed, non-universal differentiability sets. (English)
Keyword: differentiability
Keyword: Lipschitz functions
Keyword: universal differentiability set
Keyword: $\sigma$-porous set
MSC: 46G05
MSC: 46T20
idZBL: Zbl 06837068
idMR: MR3708776
DOI: 10.14712/1213-7243.2015.218
.
Date available: 2017-11-01T16:51:21Z
Last updated: 2019-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146910
.
Reference: [1] Alberti G., Csörnyei M., Preiss D.: Differentiability of Lipschitz functions, structure of null sets, and other problems.Proceedings of the International Congress of Mathematicians, volume 3, Hindustan Book Agency, New Delhi, 2010, pp. 1379–1394. Zbl 1251.26010, MR 2827846
Reference: [2] Bugeaud Y., Dodson M.M., Kristensen S.: Zero-infinity laws in Diophantine approximation.Q.J. Math. 56 (2005), no. 3, 311–320. Zbl 1204.11117, MR 2161245, 10.1093/qmath/hah043
Reference: [3] Csörnyei M., Preiss D., Tišer J.: Lipschitz functions with unexpectedly large sets of nondifferentiability points.Abstr. Appl. Anal. 2005, no. 4, 361–373. Zbl 1098.26010, MR 2202486, 10.1155/AAA.2005.361
Reference: [4] Doré M., Maleva O.: A compact null set containing a differentiability point of every Lipschitz function.Math. Ann. 351 (2011), no.3, 633–663. Zbl 1239.46035, MR 2854108, 10.1007/s00208-010-0613-4
Reference: [5] Doré M., Maleva O.: A universal differentiability set in Banach spaces with separable dual.J. Funct. Anal. 261 (2011), no. 6, 1674–1710. Zbl 1230.46035, MR 2813484, 10.1016/j.jfa.2011.05.016
Reference: [6] Doré M., Maleva O.: A compact universal differentiability set with Hausdorff dimension one.Israel J. Math. 191 (2012), no. 2, 889–900. Zbl 1281.46041, MR 3011499, 10.1007/s11856-012-0014-3
Reference: [7] Dymond M.: Differentiability and negligible sets in Banach spaces.PhD Thesis, University of Birmingham, 2014. MR 3389522
Reference: [8] Dymond M., Maleva O.: Differentiability inside sets with Minkowski dimension one.Michigan Math. J. 65 (2016), no. 3, 613–636. Zbl 1366.46029, MR 3542769, 10.1307/mmj/1472066151
Reference: [9] Fowler T., Preiss D.: A simple proof of Zahorski's description of non-differentiability sets of Lipschitz functions.Real Anal. Exchange 34 (2009), no. 1, 127–138. Zbl 1179.26010, MR 2527127, 10.14321/realanalexch.34.1.0127
Reference: [10] Grafakos L.: Classical Fourier Analysis.third edition, Graduate Texts in Mathematics, 249, Springer, New York, 2014. Zbl 1336.00075, MR 3243734, 10.1007/978-1-4939-1194-3
Reference: [11] Hájek P., Johanis M.: Smooth Analysis in Banach Spaces.De Gruyter Series in Nonlinear Analysis and Applications, 19, Walter de Gruyter, Berlin, 2014. Zbl 1329.00102, MR 3244144
Reference: [12] Ives D.J., Preiss D.: Not too well differentiable Lipschitz isomorphisms.Israel J. Math. 115 (2000), no. 1, 343–353. Zbl 0951.46019, MR 1749687, 10.1007/BF02810595
Reference: [13] Maleva O., Preiss D.: Cone unrectifiable sets and non-differentiability of Lipschitz functions.in preparation.
Reference: [14] Preiss D.: Differentiability of Lipschitz functions on Banach spaces.J. Funct. Anal. 91 (1990), no. 2, 312–345. Zbl 0872.46026, MR 1058975, 10.1016/0022-1236(90)90147-D
Reference: [15] Preiss D., Speight G.: Differentiability of Lipschitz functions in Lebesgue null sets.Invent. Math. 199 (2014), no. 2, 517–559. Zbl 1317.26011, MR 3302120, 10.1007/s00222-014-0520-5
Reference: [16] Taylor S.J.: Introduction to Measure and Integration.Cambridge University Press, Cambridge, 1973. Zbl 0277.28001
Reference: [17] Zahorski Z.: Sur l'ensemble des points de non-dérivabilité d'une fonction continue.Bull. Soc. Math. France 74 (1946), 147–178. Zbl 0061.11302, MR 0022592, 10.24033/bsmf.1381
Reference: [18] Zajíček L.: Sets of $\sigma $-porosity and sets of $\sigma $-porosity $(q)$.Časopis Pěst. Mat. 101 (1976), no. 4, 350–359. Zbl 0341.30026, MR 0457731
Reference: [19] Zelený M., Pelant J.: The structure of the $\sigma$-ideal of $\sigma$-porous sets.Comment. Math. Univ. Carolin. 45 (2004), no. 1, 37–72. MR 2076859
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-3_5.pdf 292.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo