Previous |  Up |  Next

Article

Title: Nilpotent approximation of a trident snake robot controlling distribution (English)
Author: Hrdina, Jaroslav
Author: Matoušek, Radomil
Author: Návrat, Aleš
Author: Vašík, Petr
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 6
Year: 2017
Pages: 1118-1130
Summary lang: English
.
Category: math
.
Summary: We construct a privileged system of coordinates with respect to the controlling distribution of a trident snake robot and, furthermore, we construct a nilpotent approximation with respect to the given filtration. Note that all constructions are local in the neighbourhood of a particular point. We compare the motions corresponding to the Lie bracket of the original controlling vector fields and their nilpotent approximation. (English)
Keyword: robotic snake
Keyword: local control
Keyword: nilpotent approximation
MSC: 93B27
idZBL: Zbl 06861644
idMR: MR3758938
DOI: 10.14736/kyb-2017-6-1118
.
Date available: 2018-02-26T11:32:42Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/147088
.
Reference: [1] Bao-Li, Ma: Local exponential regulation of nonholonomic systems in approximate chained form with applications to off-axle tractor-trailers..J. Robotics 2007 (2007), 1-8. 10.1155/2011/697309
Reference: [2] Cai, Q., Huang, T., Sachkov, Y. L., Yang, X.: Geodesics in the Engel group with a sub-Lorentzian metric..J. Dynamical Control Systems 22 (2016), 465-483. MR 3517612, 10.1007/s10883-015-9295-2
Reference: [3] Hermes, H.: Nilpotent approximations of control systems and distributions..Siam J. Control Optim. 24 (1986), 731-736. MR 0846379, 10.1137/0324045
Reference: [4] J.Hrdina: Local controllability of trident snake robot based on sub-Riemannian extremals..Note di Matematica 37 (2017), 93-102. MR 3660496
Reference: [5] Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Geometric Control of the Trident Snake Robot Based on CGA..Adv. Appl. Clifford Algebr. 27 (2017), 633-645. MR 3619388, 10.1007/s00006-016-0693-7
Reference: [6] Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: CGA-based robotic snake control..Adv. Appl. Clifford Algebr. 27 (2017), 633-645. MR 3619387, 10.1007/s00006-016-0693-7
Reference: [7] Ishikawa, M.: Trident snake robot: Locomotion analysis and control..In: Proc. IFAC NOLCOS, IFAC Nonlinear Control Systems, Stuttgart 2004, pp. 1169-1174. 10.1016/s1474-6670(17)31339-3
Reference: [8] Ishikawa, M., Fukiro, T.: Control of the double-linked trident snake robot based on the analysis of its oscillatory dynamics..In: Proc. IEEE/RSJ IROS 2009, pp. 1314-1319. 10.1109/iros.2009.5354831
Reference: [9] Ishikawa, M., Minami, Y., Sugie, T.: Development and control experiment of the trident snake robot..IEEE/ASME Trans. Mechatron. 15 (2010), 9-16. 10.1109/tmech.2008.2011985
Reference: [10] Jakubiak, J., Tchon, K., Janiak, M.: Motion planning of the trident snake robot: an endogenous configuration space approach..In: ROMANSY 18 Robot Design, Dynamics and Control: Proc. Eighteenth CISM-IFToMM Symposium (V. P. Castelli and W. Schiehlen, eds.), Springer, Vienna 2010, pp. 159-166. MR 3236885, 10.1007/978-3-7091-0277-0_18
Reference: [11] Jarzebowska, E.: Stabilizability and motion tracking conditions for mechanical nonholonomic control systems..Math. Problems Engrg. 2007 (2007), 1-20. MR 2417212, 10.1155/2007/31267
Reference: [12] Jean, F.: Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning..Springer International Publishing, New York 2014. MR 3308372, 10.1007/978-3-319-08690-3
Reference: [13] Liljebäck, P., Pettersen, K. Y., Stavdahl, Ø., Gravdahl, J. T.: Snake Robots, Modelling, Mechatronics and Control..Springer-Verlag, London 2013. 10.1007/978-1-4471-2996-7
Reference: [14] Meiying, O., Shengwei, G., Xianbing, W., Kexiu, D.: Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances..Kybernetika 51 (2015), 1049-1067. MR 3453685, 10.14736/kyb-2015-6-1049
Reference: [15] Murray, R. M., Zexiang, L., Sastry, S. S.: A Mathematical Introduction to Robotic Manipulation..CRC Press, Boca Raton 1994. MR 1300410
Reference: [16] Návrat, A., Matoušek, R.: Trident snake control based on CGA..Mendel 2015: Recent Advances in Computer Science 378 (2015), 375-385. 10.1007/978-3-319-19824-8_31
Reference: [17] Návrat, A., Vašík, P: On geometric control models of a robotic snake..Note di Matematica 37 (2017), 119-129. MR 3660498
Reference: [18] Pietrowska, Z., Tchon, K.: Dynamics and motion planning of trident snake robot..J. Intelligent Robotic Systems 75 (2014), 17-28. 10.1007/s10846-013-9858-y
Reference: [19] Selig, J. M.: Geometric Fundamentals of Robotics. Second edition..Springer, New York 2004. MR 2250553, 10.1017/s0263574706262805
Reference: [20] Transeth, A. A., Pettersen, K. Y., Liljebäck, P.: A survey on snake robot modeling and locomotion..Robotica 27 (2009), 999-1015. 10.1017/s0263574709005414
Reference: [21] Venditelli, M., Oriolo, G., Jean, F., Laumond, J. P.: Nonhomogeneous nilpotent approximations for nonholonomic systems with singularities..IEEE Trans. Automat. Control 49 (2004), 261-266. MR 2034349, 10.1109/tac.2003.822872
.

Files

Files Size Format View
Kybernetika_53-2017-6_10.pdf 516.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo