Previous |  Up |  Next

Article

Title: Piecewise-polynomial signal segmentation using convex optimization (English)
Author: Rajmic, Pavel
Author: Novosadová, Michaela
Author: Daňková, Marie
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 6
Year: 2017
Pages: 1131-1149
Summary lang: English
.
Category: math
.
Summary: A method is presented for segmenting one-dimensional signal whose independent segments are modeled as polynomials, and which is corrupted by additive noise. The method is based on sparse modeling, the main part is formulated as a convex optimization problem and is solved by a proximal splitting algorithm. We perform experiments on simulated and real data and show that the method is capable of reliably finding breakpoints in the signal, but requires careful tuning of the regularization parameters and internal parameters. Finally, potential extensions are discussed. (English)
Keyword: signal segmentation
Keyword: denoising
Keyword: sparsity
Keyword: piecewise-polynomial signal model
Keyword: convex optimization
MSC: 46N10
MSC: 47N10
MSC: 65K10
MSC: 90C25
MSC: 90C30
MSC: 90C90
idZBL: Zbl 06861645
idMR: MR3758939
DOI: 10.14736/kyb-2017-6-1131
.
Date available: 2018-02-26T11:34:58Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/147089
.
Reference: [1] Angelosante, D., Giannakis, G. B.: Group Lassoing change-points in piecewise-constant AR processes..EURASIP J. Advances Signal Process. 2012 (2012), 1, 1-16. 10.1186/1687-6180-2012-70
Reference: [2] Bleakley, K., Vert, J. P.: The group fused Lasso for multiple change-point detection..Technical Report.
Reference: [3] Bruckstein, A. M., Donoho, D. L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images..SIAM Rev.51 (2009), 1, 34-81. MR 2481111, 10.1137/060657704
Reference: [4] Candes, E. J., Wakin, M. B.: An introduction to compressive sampling..IEEE Signal Process. Magazine 25 (2008), 2, 21-30. 10.1109/msp.2007.914731
Reference: [5] Candes, E. J., Wakin, M. B., Boyd, S. P.: Enhancing sparsity by reweighted $\ell_1$ minimization..J. Fourier Analysis Appl. 14 (2008), 877-905. MR 2461611, 10.1007/s00041-008-9045-x
Reference: [6] Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging..J. Math. Imaging Vision 40 (2011), 1, 120-145. MR 2782122, 10.1007/s10851-010-0251-1
Reference: [7] Chartrand, R.: Shrinkage mappings and their induced penalty functions..In: IEEE International Conference on Acoustics, Speech, and Signal Processing 2014. 10.1109/icassp.2014.6853752
Reference: [8] Combettes, P., Pesquet, J.: Proximal splitting methods in signal processing..In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering 2011, pp. 185-212. MR 2858838, 10.1007/978-1-4419-9569-8_10
Reference: [9] Condat, L.: A generic proximal algorithm for convex optimization - application to total variation minimization..Signal Process. Lett., IEEE 21 (2014), 8, 985-989. 10.1109/lsp.2014.2322123
Reference: [10] Donoho, D. L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via $\ell_1$ minimization..Proc. National Acad. Sci. 100 (2003), 5, 2197-2202. MR 1963681, 10.1073/pnas.0437847100
Reference: [11] Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing..Springer 2010. MR 2677506
Reference: [12] Fornasier, M., ed.: Theoretical Foundations and Numerical Methods for Sparse Recovery..De Gruyter, Berlin, Boston 2010. MR 2731598, 10.1515/9783110226157
Reference: [13] Frecon, J., Pustelnik, N., Abry, P., Condat, L.: On-the-fly approximation of multivariate total variation minimization..IEEE Trans. Signal Process. 64 (2016), 9, 2355-2364. MR 3480014, 10.1109/tsp.2016.2516962
Reference: [14] Giryes, R., Elad, M., Bruckstein, A. M.: Sparsity based methods for overparameterized variational problems..SIAM J. Imaging Sci. 8 (2015), 3, 2133-2159. MR 3402782, 10.1137/140998585
Reference: [15] Nettest, GN: Understanding OTDR..GN Nettest (2000).
Reference: [16] Golub, G. H., Loan, C. F. V.: Matrix Computations. Third edition..Johns Hopkins University Press 1996. MR 1417720
Reference: [17] Kim, S. J., Koh, K., Boyd, S., Gorinevsky, D.: $\ell_1$ trend filtering..SIAM Rev. 51 (2009), 2, 339-360. MR 2505584, 10.1137/070690274
Reference: [18] Komodakis, N., Pesquet, J.: Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems..IEEE Signal Process. Magazine 32 (2015), 6, 31-54. 10.1109/msp.2014.2377273
Reference: [19] Kowalski, M.: Sparse regression using mixed norms..Applied Comput. Harmonic Analysis 27 (2009), 3, 303-324. MR 2559729, 10.1016/j.acha.2009.05.006
Reference: [20] Kowalski, M., Torrésani, B.: Structured Sparsity: from Mixed Norms to Structured Shrinkage..In: SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations (R. Gribonval, ed.), Inria Rennes - Bretagne Atlantique 2009, pp. 1-6.
Reference: [21] Kutyniok, G., Lim, W. Q.: Compactly supported shearlets are optimally sparse..J. Approx. Theory 163 (2011), 11, 1564-1589. MR 2832720, 10.1016/j.jat.2011.06.005
Reference: [22] Levin, D.: Between moving least-squares and moving least-$\ell_1$..BIT Numerical Math. 55 (2015), 3, 781-796. MR 3401813, 10.1007/s10543-014-0522-0
Reference: [23] Neubauer, J., Veselý, V.: Change point detection by sparse parameter estimation..Informatica 22 (2011), 1, 149-164. MR 2885664, 10.1049/pbce065e_ch7
Reference: [24] Novosadová, M., Rajmic, P.: Piecewise-polynomial curve fitting using group sparsity..In: Proc. 8th International Congress on Ultra Modern Telecommunications and Control Systems, Lisabon 2016, pp. 317-322. 10.1109/icumt.2016.7765379
Reference: [25] Novosadová, M., Rajmic, P.: Piecewise-polynomial signal segmentation using reweighted convex optimization..In: Proc. 40th International Conference on Telecommunications and Signal Processing (TSP), Barcelona 2017, pp. 769-774. 10.1109/tsp.2017.8076092
Reference: [26] Šorel, M., Šroubek, F.: Fast convolutional sparse coding using matrix inversion lemma..Digital Signal Process. 55 (2016), 44-51. 10.1016/j.dsp.2016.04.012
Reference: [27] Perraudin, N., Shuman, D. I., Puy, G., Vandergheynst, P.: Unlocbox A Matlab convex optimization toolbox using proximal splitting methods (2014)..
Reference: [28] Pock, T.: Fast Total Variation for Computer Vision..Dissertation Thesis, Graz University of Technology 2008.
Reference: [29] Rajmic, P.: Exact risk analysis of wavelet spectrum thresholding rules..In: Electronics, Circuits and Systems, 2003. ICECS 2003. Proc. 10th IEEE International Conference 2 (2003), pp. 455-458. 10.1109/icecs.2003.1301820
Reference: [30] Rajmic, P., Novosadová, M.: On the limitation of convex optimization for sparse signal segmentation..In: Proc. 39th International Conference on Telecommunications and Signal Processing, Brno University of Technology 2016, pp. 550-554. 10.1109/tsp.2016.7760941
Reference: [31] Selesnick, I. W., Arnold, S., Dantham, V. R.: Polynomial smoothing of time series with additive step discontinuities..IEEE Trans. Signal Process. 60 (2012), 12, 6305-6318. MR 3006421, 10.1109/tsp.2012.2214219
Reference: [32] Shem-Tov, S., Rosman, G., Adiv, G., Kimmel, R., Bruckstein, A. M.: Innovations for Shape Analysis. Chap. On Globally Optimal Local Modeling: From Moving Least Squares to Over-parametrization..In: Mathematics and Visualization, Springer 2012, pp. 379-405. MR 3075841, 10.1007/978-3-642-34141-0_17
Reference: [33] Starck, J. L., Candes, E. J., Donoho, D. L.: The curvelet transform for image denoising..IEEE Trans. Image Process. 11 (2002), 6, 670-684. MR 1929403, 10.1109/tip.2002.1014998
Reference: [34] Tibshirani, R.: Regression shrinkage and selection via the LASSO..J. Royal Statist. Soc. Ser. B (Methodological) 58 (1996), 1, 267-288. MR 1379242
Reference: [35] Tibshirani, R. J.: Adaptive piecewise polynomial estimation via trend filtering..Ann. Statist. 42 (2014), 1, 285-323. MR 3189487, 10.1214/13-aos1189
Reference: [36] Tropp, J.: Greed is good: Algorithmic results for sparse approximation..IEEE Trans. Inform. Theory 50 (2004), 2231-2242. MR 2097044, 10.1109/tit.2004.834793
Reference: [37] Zhang, B., Geng, J., Lai, L.: Multiple change-points estimation in linear regression models via sparse group lasso..IEEE Trans. Signal Process. 63 (2015), 9, 2209-2224. MR 3331995, 10.1109/tsp.2015.2411220
.

Files

Files Size Format View
Kybernetika_53-2017-6_11.pdf 562.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo