Previous |  Up |  Next

Article

Keywords:
randomized binomial thinning; geometric minima; estimation; likelihood ratio test; mixture distribution; realization with random size
Summary:
Many real-life count data are frequently characterized by overdispersion, excess zeros and autocorrelation. Zero-inflated count time series models can provide a powerful procedure to model this type of data. In this paper, we introduce a new stationary first-order integer-valued autoregressive process with random coefficient and zero-inflated geometric marginal distribution, named ZIGINAR$_{\rm RC}(1)$ process, which contains some sub-models as special cases. Several properties of the process are established. Estimators of the model parameters are obtained and their performance is checked by a small Monte Carlo simulation. Also, the behavior of the inflation parameter of the model is justified. We investigate an application of the process using a real count climate data set with excessive zeros for the number of tornados deaths and illustrate the best performance of the proposed process as compared with a set of competitive INAR(1) models via some goodness-of-fit statistics. Consequently, forecasting for the data is discussed with estimation of the transition probability and expected run length at state zero. Moreover, for the considered data, a test of the random coefficient for the proposed process is investigated.
References:
[1] Al-Osh, M. A., Aly, E.-E. A. A.: First order autoregressive time series with negative binomial and geometric marginals. Commun. Stat. Theory. Methods. 21 (1992), 2483-2492. DOI 10.1080/03610929208830925 | MR 1186065 | Zbl 0775.62225
[2] Al-Osh, M. A., Alzaid, A. A.: First-order integer-valued autoregressive (INAR(1)) process. J. Time. Ser. Anal. 8 (1987), 261-275. DOI 10.1111/j.1467-9892.1987.tb00438.x | MR 0903755 | Zbl 0617.62096
[3] Aly, E.-E. A. A., Bouzar, N.: On some integer-valued autoregressive moving average models. J. Multivariate Anal. 50 (1994), 132-151. DOI 10.1006/jmva.1994.1038 | MR 1292612 | Zbl 0811.62084
[4] Alzaid, A. A., Al-Osh, M. A.: First-order integer-valued autoregressive (INAR(1)) process: distributional and regression properties. Stat. Neerl. 42 (1988), 53-61. DOI 10.1111/j.1467-9574.1988.tb01521.x | MR 0959714 | Zbl 0647.62086
[5] Alzaid, A. A., Al-Osh, M. A.: Some autoregressive moving average processes with generalized Poisson marginal distributions. Ann. Inst. Stat. Math. 45 (1993), 223-232. DOI 10.1007/BF00775809 | MR 1232490 | Zbl 0777.62085
[6] Bakouch, H. S., Ristić, M. M.: Zero truncated Poisson integer-valued AR(1) model. Metrika 72 (2010), 265-280. DOI 10.1007/s00184-009-0252-5 | MR 2725101 | Zbl 1200.62099
[7] Barreto-Souza, W.: Zero-modified geometric INAR(1) process for modelling count time series with deflation or inflation of zeros. J. Time. Ser. Anal. 36 (2015), 839-852. DOI 10.1111/jtsa.12131 | MR 3419670 | Zbl 1330.62333
[8] Bourguignon, M., Vasconcellos, K. L. P.: First order non-negative integer valued autoregressive processes with power series innovations. Braz. J. Probab. Stat. 29 (2015), 71-93. DOI 10.1214/13-BJPS229 | MR 3299108 | Zbl 1329.62370
[9] Gomes, D., Castro, L. C. e: Generalized integer-valued random coefficient for a first order structure autoregressive (RCINAR) process. J. Stat. Plann. Inference 139 (2009), 4088-4097. DOI 10.1016/j.jspi.2009.05.037 | MR 2558352 | Zbl 1183.62149
[10] Jacobs, P. A., Lewis, P. A. W.: Discrete time series generated by mixtures. I: Correlational and runs properties. J. R. Stat. Soc., Ser. B. 40 (1978), 94-105. MR 0512147 | Zbl 0374.62087
[11] Jazi, M. A., Jones, G., Lai, C.-D.: First-order integer valued AR processes with zero inflated Poisson innovations. J. Time. Ser. Anal. 33 (2012), 954-963. DOI 10.1111/j.1467-9892.2012.00809.x | MR 2991911 | Zbl 1281.62197
[12] Jazi, M. A., Jones, G., Lai, C.-D.: Integer valued AR(1) with geometric innovations. J. Iran. Stat. Soc. JIRSS 11 (2012), 173-190. MR 3010343 | Zbl 1278.62136
[13] Khoo, W. C., Ong, S. H., Biswas, A.: Modeling time series of counts with a new class of INAR(1) model. Stat. Pap. 58 (2017), 393-416. DOI 10.1007/s00362-015-0704-0 | MR 3649495 | Zbl 1367.60033
[14] Li, C., Wang, D., Zhang, H.: First-order mixed integer-valued autoregressive processes with zero-inflated generalized power series innovations. J. Korean Stat. Soc. 44 (2015), 232-246. DOI 10.1016/j.jkss.2014.08.004 | MR 3342635 | Zbl 1328.62527
[15] McKenzie, E.: Some simple models for discrete variate time series. J. Water Res. Bull. 21 (1985), 645-650. DOI 10.1111/j.1752-1688.1985.tb05379.x
[16] Nicholls, D. F., Quinn, B. G.: Random Coefficient Autoregressive Models: An Introduction. Lecture Notes in Statistics 11, Springer, New York (1982). DOI 10.1007/978-1-4684-6273-9 | MR 0671255 | Zbl 0497.62081
[17] Pavlopoulos, H., Karlis, D.: INAR(1) modeling of overdispersed count series with an environmental application. Environmetrics 19 (2008), 369-393. DOI 10.1002/env.883 | MR 2440038
[18] Ridout, M., Demétrio, C. G. B., Hinde, J.: Models for count data with many zeros. Proceedings of the 19th International Biometrics Conference, Cape Town, South Africa (1998), 179-190.
[19] Ristić, M. M., Bakouch, H. S., Nastić, A. S.: A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. J. Stat. Plan. Inference. 139 (2009), 2218-2226. DOI 10.1016/j.jspi.2008.10.007 | MR 2507983 | Zbl 1160.62083
[20] Ristić, M. M., Nastić, A. S., Bakouch, H. S.: Estimation in an integer-valued autoregressive process with negative binomial marginals (NBINAR(1)). Commun. Stat., Theory Methods 41 (2012), 606-618. DOI 10.1080/03610926.2010.529528 | MR 2874378 | Zbl 1237.62125
[21] Schweer, S., Weiß, C. H.: Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion. J. Comput. Stat. Data Anal. 77 (2014), 267-284. DOI 10.1016/j.csda.2014.03.005 | MR 3210062
[22] Steutel, F. W., Harn, K. van: Discrete analogues of self-decomposability and stability. Ann. Probab. 7 (1979), 893-899. DOI 10.1214/aop/1176994950 | MR 0542141 | Zbl 0418.60020
[23] stheim, D. Tjø: Estimation in nonlinear time series models. Stochastic Processes Appl. 21 (1986), 251-273. DOI 10.1016/0304-4149(86)90099-2 | MR 0833954 | Zbl 0598.62109
[24] Weiß, C. H.: Thinning operations for modeling time series of count---a survey. AStA, Adv. Stat. Anal. 92 (2008), 319-341. DOI 10.1007/s10182-008-0072-3 | MR 2426093
[25] Zhang, H., Wang, D.: Inference for random coefficient INAR(1) process based on frequency domain analysis. Commun. Stat., Simulation Comput. 44 (2015), 1078-1100. DOI 10.1080/03610918.2013.804556 | MR 3264922 | Zbl 1315.62074
[26] Zhao, Z., Hu, Y.: Statistical inference for first-order random coefficient integer-valued autoregressive processes. J. Inequal. Appl. 2015 (2015), Paper No. 359, 12 pages. DOI 10.1186/s13660-015-0886-y | MR 3424785 | Zbl 1333.62219
[27] Zheng, H., Basawa, I. V., Datta, S.: First-order random coefficient integer-valued autoregressive processes. J. Stat. Plan. Inference 137 (2007), 212-229. DOI 10.1016/j.jspi.2005.12.003 | MR 2292852 | Zbl 1098.62117
[28] Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., Smith, G. M.: Mixed Effects Models and Extensions in Ecology with R. Statistics for Biology and Health, Springer, New York (2009). DOI 10.1007/978-0-387-87458-6 | MR 2722501 | Zbl 1284.62024
Partner of
EuDML logo