Previous |  Up |  Next

Article

Title: On stability of linear neutral differential equations with variable delays (English)
Author: Berezansky, Leonid
Author: Braverman, Elena
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 3
Year: 2019
Pages: 863-891
Summary lang: English
.
Category: math
.
Summary: We present a review of known stability tests and new explicit exponential stability conditions for the linear scalar neutral equation with two delays $$ \dot {x}(t)-a(t)\dot {x}(g(t))+b(t)x(h(t))=0, $$ where $$ |a(t)|<1, \quad b(t)\geq 0, \quad h(t)\leq t, \quad g(t)\leq t, $$ and for its generalizations, including equations with more than two delays, integro-differential equations and equations with a distributed delay. (English)
Keyword: neutral equation
Keyword: exponential stability
Keyword: solution estimate
Keyword: integro-differential equation
Keyword: distributed delay
MSC: 34K06
MSC: 34K20
MSC: 34K40
MSC: 45J05
idZBL: Zbl 07088821
idMR: MR3989283
DOI: 10.21136/CMJ.2019.0534-17
.
Date available: 2019-07-24T11:21:12Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147794
.
Reference: [1] Agarwal, R. P., Grace, S. R.: Asymptotic stability of certain neutral diffferential equations.Math. Comput. Modelling 31 (2000), 9-15. Zbl 1042.34569, MR 1761480, 10.1016/S0895-7177(00)00056-X
Reference: [2] Anokhin, A., Berezansky, L., Braverman, E.: Exponential stability of linear delay impulsive differential equations.J. Math. Anal. Appl. 193 (1995), 923-941. Zbl 0837.34076, MR 1341049, 10.1006/jmaa.1995.1275
Reference: [3] Ardjouni, A., Djoudi, A.: Fixed points and stability in neutral nonlinear differential equations with variable delays.Opusc. Math. 32 (2012), 5-19. Zbl 1254.34110, MR 2852465, 10.7494/OpMath.2012.32.1.5
Reference: [4] Azbelev, N. V., Simonov, P. M.: Stability of Differential Equations with Aftereffect.Stability and Control: Theory, Methods and Applications 20, Taylor and Francis, London (2003). Zbl 1049.34090, MR 1965019, 10.1201/9781482264807
Reference: [5] Berezansky, L. M.: Development of N. V. Azbelev's $W$-method in problems of the stability of solutions of linear functional-differential equations.Differ. Equations 22 (1986), 521-529 translation from Differ. Uravn. 22 1986 739-750 Russian. Zbl 0612.34069, MR 0846501
Reference: [6] Berezansky, L., Braverman, E.: Oscillation criteria for a linear neutral differential equation.J. Math. Anal. Appl. 286 (2003), 601-617. Zbl 1055.34123, MR 2008851, 10.1016/S0022-247X(03)00502-X
Reference: [7] Berezansky, L., Braverman, E.: On stability of some linear and nonlinear delay differential equations.J. Math. Anal. Appl. 314 (2006), 391-411. Zbl 1101.34057, MR 2185238, 10.1016/j.jmaa.2005.03.103
Reference: [8] Berezansky, L., Braverman, E.: Explicit exponential stability conditions for linear differential equations with several delays.J. Math. Anal. Appl. 332 (2007), 246-264. Zbl 1118.34069, MR 2319658, 10.1016/j.jmaa.2006.10.016
Reference: [9] Berezansky, L., Braverman, E.: Linearized oscillation theory for a nonlinear equation with a distributed delay.Math. Comput. Modelling 48 (2008), 287-304. Zbl 1145.45303, MR 2431340, 10.1016/j.mcm.2007.10.003
Reference: [10] Berezansky, L., Braverman, E.: Global linearized stability theory for delay differential equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 2614-2624. Zbl 1208.34115, MR 2532787, 10.1016/j.na.2009.01.147
Reference: [11] Burton, T. A.: Stability by Fixed Point Theory for Functional Differential Equations.Dover Publications, Mineola (2006). Zbl 1160.34001, MR 2281958
Reference: [12] Cahlon, B., Schmidt, D.: An algorithmic stability test for neutral first order delay differential equations with $M$ commensurate delays.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 23 (2016), 1-26. Zbl 1333.34112, MR 3453288
Reference: [13] Gil', M. I.: Stability of Neutral Functional Differential Equations.Atlantis Studies in Differential Equations 3, Atlantis Press, Amsterdam (2014). Zbl 1315.34002, MR 3289984, 10.2991/978-94-6239-091-1
Reference: [14] Gopalsamy, K.: A simple stability criterion for linear neutral differential systems.Funkc. Ekvacioj, Ser. Int. 28 (1985), 33-38. Zbl 0641.34069, MR 0803401
Reference: [15] Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics.Mathematics and Its Applications 74, Kluwer Academic Publishers, Dordrecht (1992). Zbl 0752.34039, MR 1163190, 10.1007/978-94-015-7920-9
Reference: [16] Gusarenko, S. A., Domoshnitsky, A. I.: Asymptotic and oscillation properties of first-order linear scalar functional-differential equations.Differ. Equations 25 (1989), 1480-1491 translation from Differ. Uravn. 25 1989 2090-2103 Russian. Zbl 0726.45011, MR 1044645
Reference: [17] Györi, I., Ladas, G.: Oscillation Theory of Delay Differential Equations: With Applications.Clarendon Press, Oxford (1991). Zbl 0780.34048, MR 1168471
Reference: [18] Jin, C., Luo, J.: Fixed points and stability in neutral differential equations with variable delays.Proc. Am. Math. Soc. 136 (2008), 909-918. Zbl 1136.34059, MR 2361863, 10.1090/S0002-9939-07-09089-2
Reference: [19] Kolmanovskii, V. B., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations.Mathematics and Its Applications 463, Kluwer Academic Publishers, Dordrecht (1999). Zbl 0917.34001, MR 1680144, 10.1007/978-94-017-1965-0
Reference: [20] Kolmanovskii, V. B., Nosov, V. R.: Stability of Functional Differential Equations.Mathematics in Science and Engineering 180, Academic Press, London (1986). Zbl 0593.34070, MR 0860947, 10.1016/S0076-5392(08)62051-2
Reference: [21] Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics.Mathematics in Science and Engineering 191, Academic Press, Boston (1993). Zbl 0777.34002, MR 1218880, 10.1016/s0076-5392(08)x6164-8
Reference: [22] Liu, G., Yan, J.: Global asymptotic stability of nonlinear neutral differential equation.Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 1035-1041. MR 3119279, 10.1016/j.cnsns.2013.08.035
Reference: [23] Raffoul, Y. N.: Stability in neutral nonlinear differential equations with functional delays using fixed-point theory.Math. Comput. Modelling 40 (2004), 691-700. Zbl 1083.34536, MR 2106161, 10.1016/j.mcm.2004.10.001
Reference: [24] Shaikhet, L.: Lyapunov Functionals and Stability of Stochastic Functional Differential Equations.Springer, Cham (2013). Zbl 1277.34003, MR 3076210, 10.1007/978-3-319-00101-2
Reference: [25] Tang, X. H., Zou, X.: Asymptotic stability of a neutral differential equations.Proc. Edinb. Math. Soc., II. Ser. 45 (2002), 333-347. Zbl 1024.34070, MR 1912643, 10.1017/S0013091501000396
Reference: [26] Wang, X., Liao, L.: Asymptotic behavior of solutions of neutral differential equations with positive and negative coefficients.J. Math. Anal. Appl. 279 (2003), 326-338. Zbl 1054.34128, MR 1970509, 10.1016/S0022-247X(03)00021-0
Reference: [27] Wu, J., Yu, J. S.: Convergence in nonautonomous scalar neutral equations.Dyn. Syst. Appl. 4 (1995), 279-290. Zbl 0830.34066, MR 1338949
Reference: [28] Ye, H., Gao, G.: Stability theorem for a class of nonautonomous neutral differential equations with unbounded delay.J. Math. Anal. Appl. 258 (2001), 556-564. Zbl 0991.34061, MR 1835558, 10.1006/jmaa.2000.7391
Reference: [29] Yu, J. S.: Asymptotic stability for nonautonomous scalar neutral differential equations.J. Math. Anal. Appl. 203 (1996), 850-860. Zbl 0866.34061, MR 1417134, 10.1006/jmaa.1996.0416
Reference: [30] Zhao, D.: New criteria for stability of neutral differential equations with variable delays by fixed points method.Adv. Difference Equ. 2011 (2011), Paper No. 48, 11 pages. Zbl 1282.34076, MR 2891788, 10.1186/1687-1847-2011-48
.

Files

Files Size Format View
CzechMathJ_69-2019-3_16.pdf 400.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo