Previous |  Up |  Next

Article

Keywords:
functional observer; discrete-time systems; exponential stability; interval time-varying delays; Lyapunov–Krasovskii functional
Summary:
This paper is concerned with the functional observer design for a class of Multi-Input Multi-Output discrete-time systems with mixed time-varying delays. Firstly, using the Lyapunov-Krasovskii functional approach, we design the parameters of the delay-dependent observer. We establish the sufficient conditions to guarantee the exponential stability of functional observer error system. In addition, for design purposes, delay-dependent sufficient conditions are proposed in terms of matrix inequalities to guarantee that the functional observer error system is exponentially stable. Secondly, we presented the sufficient conditions of the existence of internal-delay independent functional observer to ensure the estimated error system is asymptotically stable. Furthermore, some sufficient conditions are obtained to guarantee that the internal-delay independent functional observer error system is exponentially stable. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed method.
References:
[1] Astorga-Zaragoza, C. M., Alvarado-Martínez, V. M., A, Zavala-Río, Méndez-Ocaña, R. M., Guerrero-Ramírez, G. V.: Observer-based monitoring of heat exchangers. ISATrans 47 (2008), 1, 15-24. DOI 10.1016/j.isatra.2007.05.003
[2] Boskos, D., Tsinias, J.: Sufficient conditions on the existence of switching observers for nonlinear time-varying systems. European J. Control 19 (2013), 87-103. DOI 10.1016/j.ejcon.2012.10.002 | MR 3300121
[3] Darouach, M.: Linear functional observers for systems with delays in statevariables. IEEE Trans. Automat. Control 46 (2001), 3, 491-496. DOI 10.1109/9.911430 | MR 1819826
[4] Darouach, M.: Linear functional observers for systems with delays in state variables: the discrete-time case. IEEE Trans. Automat. Control 50 (2015), 2, 228-233. DOI 10.1109/tac.2004.841932 | MR 2116429
[5] Dawson, D. M., Carroll, J. J., Schneider, M.: Integrator backstepping control of a brush dc motor turning a robotic load. IEEE Trans. Automat. Control Systems Technol. 2 (1994), 3, 233-244. DOI 10.1109/87.317980
[6] Dong, Y., Chen, L., Mei, S.: Stability analysis and observer design for discrete-time systems with interval time-varying delay. Optim. Control Appl. Methods 7 (2016), 340-358. DOI 10.1002/oca.2171 | MR 3481332
[7] Dong, Y., Wang, H., Wang, Y.: Design of observers for nonlinear systems with $H_\infty $ performance analysis. Math. Methods Appl. Sci. 37 (2014), 718-725. DOI 10.1002/mma.2830 | MR 3180633
[8] Fairman, F., Gupta, R.: Design of multifunctional reduced order observers. Int. J. Syst. Sci. 11 (1980), 9, 1083-1094. DOI 10.1080/00207728008967076 | MR 0591957
[9] Mohajerpoor, R., Shanmugam, A. H., Nahavandi, S.: Partial state estimation of LTI systems with multiple constant time-delays. J. Franklin Inst. 353 (2016), 541-560. DOI 10.1016/j.jfranklin.2015.11.011 | MR 3448157
[10] Rao, C. R., Mitra, S. K.: Generalized Inverse of Matrices and Its Applications. Wiley, New York 1971. MR 0338013
[11] Sename, O.: New trends in design of observers for time-delay systems. Kybernetika 37 (2001), 4, 427-458. MR 1859095
[12] Teh, P. S., Trinh, H.: Design of unknown input functional observers for nonlinear systems with application to fault diagnosis. J. Process Control 23 (2013), 1169-1184. DOI 10.1016/j.jprocont.2013.06.013
[13] Xuabb, H.: The existence and design of functional observers for two-dimensional systems. System Control Lett. 61 (2012), 362-368. DOI 10.1016/j.sysconle.2011.11.011 | MR 2878727
[14] Zhang, Z., Xu, S.: Observer design for uncertain nonlinear systems with unmodeled dynamics. Automatica 51 (2015), 80-84. DOI 10.1016/j.automatica.2014.10.068 | MR 3284755
[15] Zhao, G., Wang, J.: Reset observers for linear time-varying delay systems: delay-dependent approach. J. Franklin Inst. 351 (2014), 11, 5133-5147. DOI 10.1016/j.jfranklin.2014.08.011 | MR 3267040
[16] Zhu, X. L., Yang, G. H.: Jensen inequality approach to stability analysis of discrete-time systems with time-varying delay. In: Proc. 2008 American Control Conference, WA 2008, pp. 1644-1649. DOI 10.1109/acc.2008.4586727 | MR 2428463
Partner of
EuDML logo