Previous |  Up |  Next

Article

Title: $f$-biminimal maps between Riemannian manifolds (English)
Author: Zhao, Yan
Author: Liu, Ximin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 893-905
Summary lang: English
.
Category: math
.
Summary: We give the definition of $f$-biminimal submanifolds and derive the equation for $f$-biminimal submanifolds. As an application, we give some examples of $f$-biminimal manifolds. Finally, we consider $f$-minimal hypersurfaces in the product space $\mathbb {R}^{n}\times \mathbb {S}^{1}(a)$ and derive two rigidity theorems. (English)
Keyword: variational vector field
Keyword: hypersurface
Keyword: $f$-biminimal submanifold
Keyword: mean curvature vector
MSC: 53B25
MSC: 53C40
idZBL: 07144863
idMR: MR4039608
DOI: 10.21136/CMJ.2019.0328-17
.
Date available: 2019-11-28T08:45:34Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147901
.
Reference: [1] Balmuş, A., Montaldo, S., Oniciuc, C.: Classification results for biharmonic submanifolds in spheres.Isr. J. Math. 168 (2008), 201-220. Zbl 1172.58004, MR 2448058, 10.1007/s11856-008-1064-4
Reference: [2] Bayle, V.: Propriétés de concavité du profil isopérimétrique et applications.These de Doctorat, Université Joseph-Fourier, Grenoble French (2003).
Reference: [3] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of $\mathbb S^{3}$.Int. J. Math. 12 (2001), 867-876. Zbl 1111.53302, MR 1863283, 10.1142/S0129167X01001027
Reference: [4] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in spheres.Isr. J. Math. 130 (2002), 109-123. Zbl 1038.58011, MR 1919374, 10.1007/BF02764073
Reference: [5] Chen, B.-Y.: Some open problems and conjectures on submanifolds of finite type.Soochow J. Math. 17 (1991), 169-188. Zbl 0749.53037, MR 1143504
Reference: [6] Chen, B.-Y., Ishikawa, S.: Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces.Kyushu J. Math. 52 (1998), 167-185. Zbl 0892.53012, MR 1609044, 10.2206/kyushujm.52.167
Reference: [7] Cheng, X., Mejia, T., Zhou, D.: Eigenvalue estimate and compactness for closed $f$-minimal surfaces.Pac. J. Math. 271 (2014), 347-367. Zbl 1322.58020, MR 3267533, 10.2140/pjm.2014.271.347
Reference: [8] Cheng, X., Mejia, T., Zhou, D.: Stability and compactness for complete $f$-minimal surfaces.Trans. Am. Math. Soc. 367 (2015), 4041-4059. Zbl 1318.53061, MR 3324919, 10.1090/S0002-9947-2015-06207-2
Reference: [9] Dimitrić, I.: Submanifolds of $E^{m}$ with harmonic mean curvature vector.Bull. Inst. Math., Acad. Sin. 20 (1992), 53-65. Zbl 0778.53046, MR 1166218
Reference: [10] J. Eells, Jr., J. H. Sampson: Harmonic mappings of Riemannian manifolds.Am. J. Math. 86 (1964), 109-160. Zbl 0122.40102, MR 0164306, 10.2307/2373037
Reference: [11] Fetcu, D., Oniciuc, C., Rosenberg, H.: Biharmonic submanifolds with parallel mean curvature in $\mathbb S^{n}\times \mathbb R$.J. Geom. Anal. 23 (2013), 2158-2176. Zbl 1281.58008, MR 3107694, 10.1007/s12220-012-9323-3
Reference: [12] Hasanis, T., Vlachos, T.: Hypersurfaces in $E^{4}$ with harmonic mean curvature vector field.Math. Nachr. 172 (1995), 145-169. Zbl 0839.53007, MR 1330627, 10.1002/mana.19951720112
Reference: [13] Jiang, G.: 2-harmonic maps and their first and second variational formulas.Chin. Ann. Math., Ser. A 7 (1986), 389-402 Chinese. Zbl 0628.58008, MR 0886529, 10.1285/i15900932v28n1supplp209
Reference: [14] Jiang, G.: Some nonexistence theorems on 2-harmonic and isometric immersions in Euclidean space.Chin. Ann. Math., Ser. A 8 (1987), 377-383 Chinese. Zbl 0637.53071, MR 0924896
Reference: [15] Li, X. X., Li, J. T.: The rigidity and stability of complete $f$-minimal hypersurfaces in $\mathbb{R}\times\mathbb{S}^{1}(a)$.(to appear) in Proc. Am. Math. Soc. MR 3600797
Reference: [16] Liu, G.: Stable weighted minimal surfaces in manifolds with non-negative Bakry-Emery Ricci tensor.Commun. Anal. Geom. 21 (2013), 1061-1079. Zbl 1301.53057, MR 3152972, 10.4310/CAG.2013.v21.n5.a7
Reference: [17] Lu, W. J.: On $f$-bi-harmonic maps and bi-$f$-harmonic maps between Riemannian manifolds.Sci. China, Math. 58 (2015), 1483-1498. Zbl 1334.53063, MR 3353985, 10.1007/s11425-015-4997-1
Reference: [18] Ou, Y.-L., Wang, Z.-P.: Constant mean curvature and totally umbilical biharmonic surfaces in 3-dimensional geometries.J. Geom. Phys. 61 (2011), 1845-1853. Zbl 1227.58004, MR 2822453, 10.1016/j.geomphys.2011.04.008
Reference: [19] Ouakkas, S., Nasri, R., Djaa, M.: On the $f$-harmonic and $f$-biharmonic maps.JP J. Geom. Topol. 10 (2010), 11-27. Zbl 1209.58014, MR 2677559
.

Files

Files Size Format View
CzechMathJ_69-2019-4_1.pdf 302.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo