Previous |  Up |  Next

Article

Title: Invariant harmonic unit vector fields on the oscillator groups (English)
Author: Xu, Na
Author: Tan, Ju
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 907-924
Summary lang: English
.
Category: math
.
Summary: We find all the left-invariant harmonic unit vector fields on the oscillator groups. Besides, we determine the associated harmonic maps from the oscillator group into its unit tangent bundle equipped with the associated Sasaki metric. Moreover, we investigate the stability and instability of harmonic unit vector fields on compact quotients of four dimensional oscillator group $G_1(1)$. (English)
Keyword: harmonic vector field
Keyword: harmonic map
Keyword: oscillator group
MSC: 53C25
MSC: 53C43
idZBL: 07144864
idMR: MR4039609
DOI: 10.21136/CMJ.2019.0538-17
.
Date available: 2019-11-28T08:46:02Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147903
.
Reference: [1] Boeckx, E., Vanhecke, L.: Harmonic and minimal vector fields on tangent and unit tangent bundles.Differ. Geom. Appl. 13 (2000), 77-93. Zbl 0973.53053, MR 1775222, 10.1016/s0926-2245(00)00021-8
Reference: [2] Boeckx, E., Vanhecke, L.: Harmonic and minimal radial vector fields.Acta Math. Hung. 90 (2001), 317-331. Zbl 1012.53040, MR 1910716, 10.1023/a:1010687231629
Reference: [3] Boothby, W. M.: An Introduction to Differentiable Manifolds and Riemannian Geometry.Pure and Applied Mathematics 120, Academic Press, Orlando (1986). Zbl 0596.53001, MR 0861409, 10.1016/S0079-8169(08)61173-3
Reference: [4] Boucetta, M., Medina, A.: Solutions of the Yang-Baxter equations on quadratic Lie groups: the case of oscillator groups.J. Geom. Phys. 61 (2011), 2309-2320. Zbl 1226.53070, MR 2838508, 10.1016/j.geomphys.2011.07.004
Reference: [5] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces.Cent. Eur. J. Math. 10 (2012), 411-425. Zbl 1246.53083, MR 2886549, 10.2478/s11533-011-0109-9
Reference: [6] Díaz, R. D., Gadea, P. M., Oubiña, J. A.: Reductive decompositions and Einstein-Yang-Mills equations associated to the oscillator group.J. Math. Phys. 40 (1999), 3490-3498. Zbl 0978.53095, MR 1696968, 10.1063/1.532902
Reference: [7] Gadea, P. M., Oubiña, J. A.: Homogeneous Lorentzian structures on the oscillator groups.Arch. Math. 73 (1999), 311-320. Zbl 0954.53029, MR 1710084, 10.1007/s000130050403
Reference: [8] Gil-Medrano, O.: Relationship between volume and energy of vector fields.Differ. Geom. Appl. 15 (2001), 137-152. Zbl 1066.53068, MR 1857559, 10.1016/s0926-2245(01)00053-5
Reference: [9] González-Dávila, J. C., Vanhecke, L.: Examples of minimal unit vector fields.Ann. Global Anal. Geom. 18 (2000), 385-404. Zbl 1005.53026, MR 1795104, 10.1023/a:1006788819180
Reference: [10] González-Dávila, J. C., Vanhecke, L.: Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds.J. Geom. 72 (2001), 65-76. Zbl 1005.53039, MR 1891456, 10.1007/s00022-001-8570-4
Reference: [11] González-Dávila, J. C., Vanhecke, L.: Energy and volume of unit vector fields on three-dimensional Riemannian manifolds.Differ. Geom. Appl. 16 (2002), 225-244. Zbl 1035.53089, MR 1900746, 10.1016/s0926-2245(02)00060-8
Reference: [12] Levichev, A. V.: Chronogeometry of an electromagnetic wave given by a bi-invariant metric on the oscillator group.Sib. Math. J. 27 (1986), 237-245 English. Russian original translation from Sib. Mat. Zh. 27 1986 117-126. Zbl 0602.53057, MR 0890307, 10.1007/bf00969391
Reference: [13] Medina, A.: Groupes de Lie munis de métriques bi-invariantes..Tohoku Math. J. 2 37 French (1985), 405-421. Zbl 0583.53053, MR 0814072, 10.2748/tmj/1178228586
Reference: [14] Milnor, J. W.: Curvatures of left invariant metrics on Lie groups.Adv. Math. 21 (1976), 293-329. Zbl 0341.53030, MR 0425012, 10.1016/s0001-8708(76)80002-3
Reference: [15] Onda, K.: Examples of algebraic Ricci solitons in the pseudo-Riemannian case.Acta Math. Hung. 144 (2014), 247-265. Zbl 1324.53063, MR 3267185, 10.1007/s10747-014-0426-0
Reference: [16] Tsukada, K., Vanhecke, L.: Minimality and harmonicity for Hopf vector fields.Ill. J. Math. 45 (2001), 441-451. Zbl 0997.53040, MR 1878613, 10.1215/ijm/1258138349
Reference: [17] Vanhecke, L., González-Dávila, J. C.: Invariant harmonic unit vector fields on Lie groups.Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 377-403. Zbl 1097.53033, MR 1911197
Reference: [18] Wiegmink, G.: Total bending of vector fields on Riemannian manifolds.Math. Ann. 303 (1995), 325-344. Zbl 0834.53034, MR 1348803, 10.1007/bf01460993
.

Files

Files Size Format View
CzechMathJ_69-2019-4_2.pdf 325.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo