Title:
|
Invariant harmonic unit vector fields on the oscillator groups (English) |
Author:
|
Xu, Na |
Author:
|
Tan, Ju |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
4 |
Year:
|
2019 |
Pages:
|
907-924 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We find all the left-invariant harmonic unit vector fields on the oscillator groups. Besides, we determine the associated harmonic maps from the oscillator group into its unit tangent bundle equipped with the associated Sasaki metric. Moreover, we investigate the stability and instability of harmonic unit vector fields on compact quotients of four dimensional oscillator group $G_1(1)$. (English) |
Keyword:
|
harmonic vector field |
Keyword:
|
harmonic map |
Keyword:
|
oscillator group |
MSC:
|
53C25 |
MSC:
|
53C43 |
idZBL:
|
07144864 |
idMR:
|
MR4039609 |
DOI:
|
10.21136/CMJ.2019.0538-17 |
. |
Date available:
|
2019-11-28T08:46:02Z |
Last updated:
|
2022-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147903 |
. |
Reference:
|
[1] Boeckx, E., Vanhecke, L.: Harmonic and minimal vector fields on tangent and unit tangent bundles.Differ. Geom. Appl. 13 (2000), 77-93. Zbl 0973.53053, MR 1775222, 10.1016/s0926-2245(00)00021-8 |
Reference:
|
[2] Boeckx, E., Vanhecke, L.: Harmonic and minimal radial vector fields.Acta Math. Hung. 90 (2001), 317-331. Zbl 1012.53040, MR 1910716, 10.1023/a:1010687231629 |
Reference:
|
[3] Boothby, W. M.: An Introduction to Differentiable Manifolds and Riemannian Geometry.Pure and Applied Mathematics 120, Academic Press, Orlando (1986). Zbl 0596.53001, MR 0861409, 10.1016/S0079-8169(08)61173-3 |
Reference:
|
[4] Boucetta, M., Medina, A.: Solutions of the Yang-Baxter equations on quadratic Lie groups: the case of oscillator groups.J. Geom. Phys. 61 (2011), 2309-2320. Zbl 1226.53070, MR 2838508, 10.1016/j.geomphys.2011.07.004 |
Reference:
|
[5] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces.Cent. Eur. J. Math. 10 (2012), 411-425. Zbl 1246.53083, MR 2886549, 10.2478/s11533-011-0109-9 |
Reference:
|
[6] Díaz, R. D., Gadea, P. M., Oubiña, J. A.: Reductive decompositions and Einstein-Yang-Mills equations associated to the oscillator group.J. Math. Phys. 40 (1999), 3490-3498. Zbl 0978.53095, MR 1696968, 10.1063/1.532902 |
Reference:
|
[7] Gadea, P. M., Oubiña, J. A.: Homogeneous Lorentzian structures on the oscillator groups.Arch. Math. 73 (1999), 311-320. Zbl 0954.53029, MR 1710084, 10.1007/s000130050403 |
Reference:
|
[8] Gil-Medrano, O.: Relationship between volume and energy of vector fields.Differ. Geom. Appl. 15 (2001), 137-152. Zbl 1066.53068, MR 1857559, 10.1016/s0926-2245(01)00053-5 |
Reference:
|
[9] González-Dávila, J. C., Vanhecke, L.: Examples of minimal unit vector fields.Ann. Global Anal. Geom. 18 (2000), 385-404. Zbl 1005.53026, MR 1795104, 10.1023/a:1006788819180 |
Reference:
|
[10] González-Dávila, J. C., Vanhecke, L.: Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds.J. Geom. 72 (2001), 65-76. Zbl 1005.53039, MR 1891456, 10.1007/s00022-001-8570-4 |
Reference:
|
[11] González-Dávila, J. C., Vanhecke, L.: Energy and volume of unit vector fields on three-dimensional Riemannian manifolds.Differ. Geom. Appl. 16 (2002), 225-244. Zbl 1035.53089, MR 1900746, 10.1016/s0926-2245(02)00060-8 |
Reference:
|
[12] Levichev, A. V.: Chronogeometry of an electromagnetic wave given by a bi-invariant metric on the oscillator group.Sib. Math. J. 27 (1986), 237-245 English. Russian original translation from Sib. Mat. Zh. 27 1986 117-126. Zbl 0602.53057, MR 0890307, 10.1007/bf00969391 |
Reference:
|
[13] Medina, A.: Groupes de Lie munis de métriques bi-invariantes..Tohoku Math. J. 2 37 French (1985), 405-421. Zbl 0583.53053, MR 0814072, 10.2748/tmj/1178228586 |
Reference:
|
[14] Milnor, J. W.: Curvatures of left invariant metrics on Lie groups.Adv. Math. 21 (1976), 293-329. Zbl 0341.53030, MR 0425012, 10.1016/s0001-8708(76)80002-3 |
Reference:
|
[15] Onda, K.: Examples of algebraic Ricci solitons in the pseudo-Riemannian case.Acta Math. Hung. 144 (2014), 247-265. Zbl 1324.53063, MR 3267185, 10.1007/s10747-014-0426-0 |
Reference:
|
[16] Tsukada, K., Vanhecke, L.: Minimality and harmonicity for Hopf vector fields.Ill. J. Math. 45 (2001), 441-451. Zbl 0997.53040, MR 1878613, 10.1215/ijm/1258138349 |
Reference:
|
[17] Vanhecke, L., González-Dávila, J. C.: Invariant harmonic unit vector fields on Lie groups.Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 377-403. Zbl 1097.53033, MR 1911197 |
Reference:
|
[18] Wiegmink, G.: Total bending of vector fields on Riemannian manifolds.Math. Ann. 303 (1995), 325-344. Zbl 0834.53034, MR 1348803, 10.1007/bf01460993 |
. |