Title:
|
The duality of Auslander-Reiten quiver of path algebras (English) |
Author:
|
Hou, Bo |
Author:
|
Yang, Shilin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
4 |
Year:
|
2019 |
Pages:
|
925-943 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $Q$ be a finite union of Dynkin quivers, $G\subseteq {\rm Aut}(\Bbbk {Q})$ a finite abelian group, $\widehat {Q}$ the generalized McKay quiver of $(Q, G)$ and $\Gamma _{Q}$ the Auslander-Reiten quiver of $\Bbbk Q$. Then $G$ acts functorially on the quiver $\Gamma _{Q}$. We show that the Auslander-Reiten quiver of $\Bbbk \widehat {Q}$ coincides with the generalized McKay quiver of $(\Gamma _{Q}, G)$. (English) |
Keyword:
|
Auslander-Reiten quiver |
Keyword:
|
generalized McKay quiver |
Keyword:
|
duality |
MSC:
|
16G10 |
MSC:
|
16G20 |
MSC:
|
16G70 |
idZBL:
|
07144865 |
idMR:
|
MR4039610 |
DOI:
|
10.21136/CMJ.2019.0541-17 |
. |
Date available:
|
2019-11-28T08:46:32Z |
Last updated:
|
2022-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147904 |
. |
Reference:
|
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory.London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309 |
Reference:
|
[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras.Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). Zbl 0834.16001, MR 1314422, 10.1017/CBO9780511623608 |
Reference:
|
[3] Demonet, L.: Skew group algebras of path algebras and preprojective algebras.J. Algebra 323 (2010), 1052-1059. Zbl 1210.16017, MR 2578593, 10.1016/j.jalgebra.2009.11.034 |
Reference:
|
[4] Deng, B., Du, J.: Frobenius morphisms and representations of algebras.Trans. Am. Math. Soc. 358 (2006), 3591-3622. Zbl 1095.16007, MR 2218990, 10.1090/S0002-9947-06-03812-8 |
Reference:
|
[5] Deng, B., Du, J., Parshall, B., Wang, J.: Finite Dimensional Algebras and Quantum Groups.Mathematical Surveys and Monographs 150. American Mathematical Society, Providence (2008). Zbl 1154.17003, MR 2457938, 10.1090/surv/150 |
Reference:
|
[6] Gabriel, P., Roĭter, A. V.: Algebra VIII. Representations of Finite-Dimensional Algebras.Encyclopaedia of Mathematical Sciences 73. Springer, Berlin A. I. Kostrikin, et al. (1992). Zbl 0839.16001, MR 1239447 |
Reference:
|
[7] Guo, J.: On the McKay quivers and $m$-Cartan matrices.Sci. China, Ser. A 52 (2009), 511-516. Zbl 1181.16014, MR 2491769, 10.1007/s11425-008-0176-y |
Reference:
|
[8] Hou, B., Yang, S.: Skew group algebras of deformed preprojective algebras.J. Algebra 332 (2011), 209-228. Zbl 1252.16010, MR 2774685, 10.1016/j.jalgebra.2011.02.007 |
Reference:
|
[9] Hou, B., Yang, S.: Generalized McKay quivers, root system and Kac-Moody algebras.J. Korean Math. Soc. 52 (2015), 239-268. Zbl 1335.16011, MR 3318368, 10.4134/JKMS.2015.52.2.239 |
Reference:
|
[10] Hubery, A.: Representations of Quiver Respecting a Quiver Automorphism and a Theorem of Kac.Ph.D. Thesis, University of Leeds, Leeds (2002). MR 2025328 |
Reference:
|
[11] Hubery, A.: Quiver representations respecting a quiver automorphism: a generalization of a theorem of Kac.J. Lond. Math. Soc., II. Ser. 69 (2004), 79-96. Zbl 1062.16021, MR 2025328, 10.1112/S0024610703004988 |
Reference:
|
[12] Kac, V. G.: Infinite-Dimensional Lie Algebras.Cambridge University Press, Cambridge (1990). Zbl 0716.17022, MR 1104219, 10.1017/CBO9780511626234 |
Reference:
|
[13] Liu, G. X.: Classification of Finite Dimensional Basic Hopf Algebras and Related Topics.Dissertation for the Doctoral Degree, Zhejiang University, Hangzhou (2005). |
Reference:
|
[14] McKay, J.: Graphs, singularities, and finite groups.The Santa Cruz Conference on Finite Groups, Proc. Sympos. Pure Math. 37 American Mathematical Society, Providence (1980), 183-186. Zbl 0451.05026, MR 0604577, 10.1090/pspum/037 |
Reference:
|
[15] Reiten, I., Riedtmann, C.: Skew group algebras in the representation theory of Artin algebras.J. Algebra 92 (1985), 224-282. Zbl 0549.16017, MR 0772481, 10.1016/0021-8693(85)90156-5 |
Reference:
|
[16] Zhang, M.: The dual quiver of the Auslander-Reiten quiver of path algebras.Algebr. Represent. Theory 15 (2012), 203-210. Zbl 1252.16015, MR 2892506, 10.1007/s10468-010-9237-3 |
Reference:
|
[17] Zhang, M., Li, F.: Representations of skew group algebras induced from isomorphically invariant modules over path algebras.J. Algebra 321 (2009), 567-581. Zbl 1207.16015, MR 2483282, 10.1016/j.jalgebra.2008.09.035 |
. |