Title:
|
Geodesically equivalent metrics on homogenous spaces (English) |
Author:
|
Bokan, Neda |
Author:
|
Šukilović, Tijana |
Author:
|
Vukmirović, Srdjan |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
4 |
Year:
|
2019 |
Pages:
|
945-954 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Two metrics on a manifold are geodesically equivalent if the sets of their unparameterized geodesics coincide. We show that if two $G$-invariant metrics of arbitrary signature on homogenous space $G/H$ are geodesically equivalent, they are affinely equivalent, i.e. they have the same Levi-Civita connection. We also prove that the existence of nonproportional, geodesically equivalent, $G$-invariant metrics on homogenous space $G/H$ implies that their holonomy algebra cannot be full. We give an algorithm for finding all left invariant metrics geodesically equivalent to a given left invariant metric on a Lie group. Using that algorithm we prove that no two left invariant metrics of any signature on sphere $S^3$ are geodesically equivalent. However, we present examples of Lie groups that admit geodesically equivalent, nonproportional, left-invariant metrics. (English) |
Keyword:
|
invariant metric |
Keyword:
|
geodesically equivalent metric |
Keyword:
|
affinely equivalent metric |
MSC:
|
22E15 |
MSC:
|
53C22 |
MSC:
|
53C30 |
idZBL:
|
07144866 |
idMR:
|
MR4039611 |
DOI:
|
10.21136/CMJ.2018.0557-17 |
. |
Date available:
|
2019-11-28T08:46:59Z |
Last updated:
|
2022-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147905 |
. |
Reference:
|
[1] Bokan, N., Šukilović, T., Vukmirović, S.: Lorentz geometry of 4-dimensional nilpotent Lie groups.Geom. Dedicata 177 (2015), 83-102. Zbl 1326.53065, MR 3370025, 10.1007/s10711-014-9980-4 |
Reference:
|
[2] Bolsinov, A. V., Kiosak, V., Matveev, V. S.: A Fubini theorem for pseudo-Riemannian geodesically equivalent metrics.J. Lond. Math. Soc., II. Ser. 80 (2009), 341-356. Zbl 1175.53022, MR 2545256, 10.1112/jlms/jdp032 |
Reference:
|
[3] Eisenhart, L. P.: Symmetric tensors of the second order whose first covariant derivatives are zero.Trans. Amer. Math. Soc. 25 (1923), 297-306 \99999JFM99999 49.0539.01. MR 1501245, 10.1090/S0002-9947-1923-1501245-6 |
Reference:
|
[4] Hall, G. S., Lonie, D. P.: Holonomy groups and spacetimes.Classical Quantum Gravity 17 (2000), 1369-1382. Zbl 0957.83014, MR 1752641, 10.1088/0264-9381/17/6/304 |
Reference:
|
[5] Hall, G. S., Lonie, D. P.: Projective structure and holonomy in four-dimensional Lorentz manifolds.J. Geom. Phys. 61 (2011), 381-399. Zbl 1208.83035, MR 2746125, 10.1016/j.geomphys.2010.10.007 |
Reference:
|
[6] Kiosak, V., Matveev, V. S.: Complete Einstein metrics are geodesically rigid.Commun. Math. Phys. 289 (2009), 383-400. Zbl 1170.53025, MR 2504854, 10.1007/s00220-008-0719-7 |
Reference:
|
[7] Kiosak, V., Matveev, V. S.: Proof of the projective Lichnerowicz conjecture for pseudo-Riemannian metrics with degree of mobility greater than two.Commun. Math. Phys. 297 (2010), 401-426. Zbl 1197.53055, MR 2651904, 10.1007/s00220-010-1037-4 |
Reference:
|
[8] Levi-Civita, T.: Sulle trasformazioni dello equazioni dinamiche.Annali di Mat. 24 Italian (1896), 255-300 \99999JFM99999 27.0603.04. MR 2551879, 10.1007/BF02419530 |
Reference:
|
[9] Sinyukov, N. S.: On geodesic mappings of Riemannian spaces onto symmetric Riemannian spaces.Dokl. Akad. Nauk SSSR, n. Ser. 98 (1954), 21-23 Russian. Zbl 0056.15301, MR 0065994 |
Reference:
|
[10] Topalov, P.: Integrability criterion of geodesical equivalence. Hierarchies.Acta Appl. Math. 59 (1999), 271-298. Zbl 0972.53048, MR 1744754, 10.1023/A:1006369525091 |
Reference:
|
[11] Wang, Z., Hall, G.: Projective structure in 4-dimensional manifolds with metric signature $(+,+,-,-)$.J. Geom. Phys. 66 (2013), 37-49. Zbl 1285.53014, MR 3019271, 10.1016/j.geomphys.2012.12.004 |
. |