Previous |  Up |  Next

Article

Title: Note on improper coloring of $1$-planar graphs (English)
Author: Chu, Yanan
Author: Sun, Lei
Author: Yue, Jun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 955-968
Summary lang: English
.
Category: math
.
Summary: A graph $G=(V,E)$ is called improperly $(d_1, \dots , d_k)$-colorable if the vertex set $V$ can be partitioned into subsets $V_1, \dots , V_k$ such that the graph $G[V_i]$ induced by the vertices of $V_i$ has maximum degree at most $d_i$ for all $1 \leq i \leq k$. In this paper, we mainly study the improper coloring of $1$-planar graphs and show that $1$-planar graphs with girth at least $7$ are $(2,0,0,0)$-colorable. (English)
Keyword: improper coloring
Keyword: 1-planar graph
Keyword: discharging method
MSC: 05C15
idZBL: 07144867
idMR: MR4039612
DOI: 10.21136/CMJ.2019.0558-17
.
Date available: 2019-11-28T08:47:35Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147906
.
Reference: [1] Appel, K., Haken, W.: The existence of unavoidable sets of geographically good configurations.Ill. J. Math. 20 (1976), 218-297. Zbl 0322.05141, MR 0392641, 10.1215/ijm/1256049898
Reference: [2] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications.North-Holland, New York (1976). MR 0411988
Reference: [3] Borodin, O. V.: Solution of Ringel's problems concerning the vertex-faced coloring of planar graphs and the coloring of 1-planar graphs.Metody Diskretn. Anal. 41 Russian (1984), 12-26. Zbl 0565.05027, MR 0832128
Reference: [4] Borodin, O. V.: A new proof of the 6 color theorem.J. Graph Theory 19 (1995), 507-521. Zbl 0826.05027, MR 1333779, 10.1002/jgt.3190190406
Reference: [5] Borodin, O. V., Kostochka, A. V.: Defective 2-colorings of sparse graphs.J. Comb. Theory, Ser. B 104 (2014), 72-80. Zbl 1282.05041, MR 3132745, 10.1016/j.jctb.2013.10.002
Reference: [6] Borodin, O. V., Kostochka, A. V., Raspaud, A., Sopena, E.: Acyclic colouring of 1-planar graphs.Discrete Appl. Math. 114 (2001), 29-41. Zbl 0996.05053, MR 1865580, 10.1016/S0166-218X(00)00359-0
Reference: [7] Borodin, O. V., Kostochka, A., Yancey, M.: On 1-improper 2-coloring of sparse graphs.Discrete Math. 313 (2013), 2638-2649. Zbl 1281.05060, MR 3095439, 10.1016/j.disc.2013.07.014
Reference: [8] Chang, G., Havet, F., Montassier, M., Raspaud, A.: Steinberg's conjecture and near colorings.Available at http://hal.inria.fr/inria-00605810/en/.
Reference: [9] Chen, Z.-Z., Kouno, M.: A linear-time algorithm for 7-coloring 1-plane graphs.Algorithmica 43 (2005), 147-177. Zbl 1082.05084, MR 2172321, 10.1007/s00453-004-1134-x
Reference: [10] Chen, M., Wang, Y., Liu, P., Xu, J.: Planar graphs without cycles of length 4 or 5 are {$(2,0,0)$}-colorable.Discrete Math. 339 (2016), 886-905. Zbl 1327.05073, MR 3431403, 10.1016/j.disc.2015.10.029
Reference: [11] Cohen-Addad, V., Hebdige, M., Král', D., Li, Z., Salgado, E.: Steinberg's conjecture is false.J. Comb. Theory, Ser. B 122 (2017), 452-456. Zbl 1350.05018, MR 3575214, 10.1016/j.jctb.2016.07.006
Reference: [12] Fabrici, I., Madaras, T.: The structure of 1-planar graphs.Discrete Math. 307 (2007), 854-865. Zbl 1111.05026, MR 2297168, 10.1016/j.disc.2005.11.056
Reference: [13] Hudák, D., Madaras, T.: On local structure of 1-planar graphs of minimum degree 5 and girth 4.Discuss. Math., Graph Theory 29 (2009), 385-400. Zbl 1194.05025, MR 2574477, 10.7151/dmgt.1454
Reference: [14] Hudák, D., Madaras, T.: On local properties of 1-planar graphs with high minimum degree.Ars Math. Contemp. 4 (2011), 245-254. Zbl 1237.05053, MR 2802062, 10.26493/1855-3974.131.91c
Reference: [15] Ringel, G.: Ein Sechsfarbenproblem auf der Kugel.Abh. Math. Semin. Univ. Hamb. 29 German (1965), 107-117. Zbl 0132.20701, MR 0187232, 10.1007/BF02996313
Reference: [16] Song, W.-Y., Miao, L.-Y., Zhang, S.-J.: List edge and list total coloring of triangle-free 1-planar graphs.J. East China Norm. Univ. Natur. Sci. Ed. (2014), 40-44. MR 3243188
Reference: [17] Suzuki, Y.: Optimal 1-planar graphs which triangulate other surfaces.Discrete Math. 310 (2010), 6-11. Zbl 1188.05056, MR 2558962, 10.1016/j.disc.2009.07.016
Reference: [18] Zhang, X., Liu, G.: On edge colorings of 1-planar graphs without adjacent triangles.Inf. Process. Lett. 112 (2012), 138-142. Zbl 1239.05078, MR 2876230, 10.1016/j.ipl.2011.10.021
Reference: [19] Zhang, X., Liu, G.: On edge colorings of 1-planar graphs without chordal 5-cycles.Ars Comb. 104 (2012), 431-436. Zbl 1274.05186, MR 2951804
Reference: [20] Zhang, X., Liu, G. Z., Wu, J. L.: Edge coloring of triangle-free 1-planar graphs.J. Shandong Univ., Nat. Sci. 45 Chinese (2010), 15-17. Zbl 1240.05125, MR 2778949
Reference: [21] Zhang, X., Wu, J., Liu, G.: List edge and list total coloring of 1-planar graphs.Front. Math. China 7 (2012), 1005-1018. Zbl 1254.05050, MR 2965951, 10.1007/s11464-012-0184-7
.

Files

Files Size Format View
CzechMathJ_69-2019-4_5.pdf 401.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo