Previous |  Up |  Next

Article

Title: Sharp eigenvalue estimates of closed $H$-hypersurfaces in locally symmetric spaces (English)
Author: de Lima, Eudes L.
Author: de Lima, Henrique F.
Author: dos Santos, Fábio R.
Author: Velásquez, Marco A. L.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 969-981
Summary lang: English
.
Category: math
.
Summary: The purpose of this article is to obtain sharp estimates for the first eigenvalue of the stability operator of constant mean curvature closed hypersurfaces immersed into locally symmetric Riemannian spaces satisfying suitable curvature conditions (which includes, in particular, a Riemannian space with constant sectional curvature). As an application, we derive a nonexistence result concerning strongly stable hypersurfaces in these ambient spaces. (English)
Keyword: locally symmetric Riemannian space
Keyword: closed $H$-hypersurface
Keyword: strong stability
Keyword: first stability eigenvalue
MSC: 53A10
MSC: 53C42
idZBL: 07144868
idMR: MR4039613
DOI: 10.21136/CMJ.2019.0562-17
.
Date available: 2019-11-28T08:47:58Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147907
.
Reference: [1] Alencar, H., Carmo, M. P. do: Hypersurfaces with constant mean curvature in spheres.Proc. Am. Math. Soc. 120 (1994), 1223-1229. Zbl 0802.53017, MR 1172943, 10.2307/2160241
Reference: [2] Alías, L. J., Barros, A., Jr., A. Brasil: A spectral characterization of the $H(r)$-torus by the first stability eigenvalue.Proc. Am. Math. Soc. 133 (2005), 875-884. Zbl 1065.53046, MR 2113939, 10.1090/S0002-9939-04-07559-8
Reference: [3] Alías, L. J., Jr., A. Brasil, Perdomo, O.: On the stability index of hypersurfaces with constant mean curvature in spheres.Proc. Am. Math. Soc. 135 (2007), 3685-3693. Zbl 1157.53030, MR 2336585, 10.1090/S0002-9939-07-08886-7
Reference: [4] Alías, L. J., Lima, H. F. de, Meléndez, J., Santos, F. R. dos: Rigidity of linear Weingarten hypersurfaces in locally symmetric manifolds.Math. Nachr. 289 (2016), 1309-1324. Zbl 1350.53078, MR 3541811, 10.1002/mana.201400296
Reference: [5] Alías, L. J., Kurose, T., Solanes, G.: Hadamard-type theorems for hypersurfaces in hyperbolic spaces.Differ. Geom. Appl. 24 (2006), 492-502. Zbl 1103.52006, MR 2254052, 10.1016/j.difgeo.2006.02.008
Reference: [6] Alías, L. J., Meroño, M. A., Ortiz, I.: On the first stability eigenvalue of constant mean curvature surfaces into homogeneous 3-manifolds.Mediterr. J. Math. 12 (2015), 147-158. Zbl 1316.53062, MR 3306032, 10.1007/s00009-014-0397-y
Reference: [7] Barros, A. A. de, Jr., A. C. Brasil, Jr., L. A. M. de Sousa: A new characterization of submanifolds with parallel mean curvature vector in $\mathbb{S}^{n + p}$.Kodai Math. J. 27 (2004), 45-56. Zbl 1059.53047, MR 2042790, 10.2996/kmj/1085143788
Reference: [8] Gomes, J. N., Lima, H. F. de, Santos, F. R. dos, Velásquez, M. A. L.: Complete hypersurfaces with two distinct principal curvatures in a locally symmetric Riemannian manifold.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 133 (2016), 15-27. Zbl 1333.53090, MR 3449745, 10.1016/j.na.2015.11.026
Reference: [9] Melendéz, J.: Rigidity theorems for hypersurfaces with constant mean curvature.Bull. Braz. Math. Soc. 45 (2014), 385-404. Zbl 1319.53065, MR 3264798, 10.1007/s00574-014-0055-9
Reference: [10] Meroño, M. A., Ortiz, I.: Eigenvalue estimates for the stability operator of CMC compact surfaces in three-dimensional warped products.J. Math. Anal. Appl. 434 (2016), 1779-1788. Zbl 1328.53075, MR 3415751, 10.1016/j.jmaa.2015.10.016
Reference: [11] Meroño, M. A., Ortiz, I.: On the first stability eigenvalue of CMC surfaces into warped products with two-dimensional fiber.Differ. Geom. Appl. 45 (2016), 67-77. Zbl 1334.53061, MR 3457388, 10.1016/j.difgeo.2015.11.009
Reference: [12] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor.Am. J. Math. 96 (1974), 207-213. Zbl 0302.53028, MR 0353216, 10.2307/2373587
Reference: [13] Perdomo,, O.: First stability eigenvalue characterization of Clifford hypersurfaces.Proc. Am. Math. Soc. 130 (2002), 3379-3384. Zbl 1014.53036, MR 1913017, 10.1090/S0002-9939-02-06451-1
Reference: [14] Simons, J.: Minimal varietes in Riemannian manifolds.Ann. Math. 88 (1968), 62-105. Zbl 0181.49702, MR 0233295, 10.2307/1970556
Reference: [15] Velásquez, M. A. L., Lima, H. F. de, Santos, F. R. dos, Aquino, C. P.: On the first stability eigenvalue of hypersurfaces in the Euclidean and hyperbolic spaces.Quaest. Math. 40 (2017), 605-616. MR 3691472, 10.2989/16073606.2017.1305463
Reference: [16] Wu, C.: New characterization of the Clifford tori and the Veronese surface.Arch. Math. 61 (1993), 277-284. Zbl 0791.53056, MR 1231163, 10.1007/BF01198725
.

Files

Files Size Format View
CzechMathJ_69-2019-4_6.pdf 303.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo