Previous |  Up |  Next

Article

Title: Geometric properties of Lie hypersurfaces in a complex hyperbolic space (English)
Author: Kim, Young Ho
Author: Maeda, Sadahiro
Author: Tanabe, Hiromasa
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 983-996
Summary lang: English
.
Category: math
.
Summary: We study homogeneous real hypersurfaces having no focal submanifolds in a complex hyperbolic space. They are called Lie hypersurfaces in this space. We clarify the geometry of Lie hypersurfaces in terms of their sectional curvatures, the behavior of the characteristic vector field and their holomorphic distributions. (English)
Keyword: complex hyperbolic space
Keyword: homogeneous real hypersurface
Keyword: Lie hypersurface
Keyword: homogeneous ruled real hypersurface
Keyword: equidistant hypersurface
Keyword: horosphere
Keyword: sectional curvature
Keyword: shape operator
Keyword: integral curve of the characteristic vector field
Keyword: holomorphic distributions
Keyword: homogeneous curve
MSC: 53B25
MSC: 53C40
idZBL: 07144869
idMR: MR4039614
DOI: 10.21136/CMJ.2019.0565-17
.
Date available: 2019-11-28T08:48:22Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147908
.
Reference: [1] Adachi, T., Bao, T., Maeda, S.: Congruence classes of minimal ruled real hypersurfaces in a nonflat complex space form.Hokkaido Math. J. 43 (2014), 137-150. Zbl 1288.53045, MR 3178483, 10.14492/hokmj/1392906097
Reference: [2] Berndt, J.: Homogeneous hypersurfaces in hyperbolic spaces.Math. Z. 229 (1998), 589-600. Zbl 0929.53025, MR 1664778, 10.1007/PL00004673
Reference: [3] Berndt, J., Tamaru, H.: Cohomogeneity one actions on noncompact symmetric spaces of rank one.Trans. Am. Math. Soc. 359 (2007), 3425-3438. Zbl 1117.53041, MR 2299462, 10.1090/S0002-9947-07-04305-X
Reference: [4] Chen, B.-Y., Maeda, S.: Hopf hypersurfaces with constant principal curvatures in complex projective or complex hyperbolic spaces.Tokyo J. Math. 24 (2001), 133-152. Zbl 1015.53039, MR 1844424, 10.3836/tjm/1255958318
Reference: [5] Hamada, T., Hoshikawa, Y., Tamaru, H.: Curvatures properties of Lie hypersurfaces in the complex hyperbolic space.J. Geom. 103 (2012), 247-261. Zbl 1266.53057, MR 2995128, 10.1007/s00022-012-0127-1
Reference: [6] Kimura, M., Maeda, S.: On real hypersurfaces of a complex projective space.Math. Z. 202 (1989), 299-311. Zbl 0661.53015, MR 1017573, 10.1007/BF01159962
Reference: [7] Kon, S. H., Loo, T.-H.: Real hypersurfaces in a complex space form with {$\eta$}-parallel shape operator.Math. Z. 269 (2011), 47-58. Zbl 1227.53071, MR 2836059, 10.1007/s00209-010-0715-4
Reference: [8] Lohnherr, M., Reckziegel, H.: On ruled real hypersurfaces in complex space forms.Geom. Dedicata 74 (1999), 267-286. Zbl 0932.53018, MR 1669351, 10.1023/A:1005000122427
Reference: [9] Maeda, S.: Geometry of the horosphere in a complex hyperbolic space.Differ. Geom. Appl. 29 (2011), s246--s250. Zbl 1225.53056, MR 2832025, 10.1016/j.difgeo.2011.04.048
Reference: [10] Maeda, S., Adachi, T.: Holomorphic helices in a complex space form.Proc. Am. Math. Soc. 125 (1997), 1197-1202. Zbl 0876.53045, MR 1353391, 10.1090/S0002-9939-97-03627-7
Reference: [11] Maeda, S., Adachi, T., Kim, Y. H.: A characterization of the homogeneous minimal ruled real hypersurface in a complex hyperbolic space.J. Math. Soc. Japan 61 (2009), 315-325. Zbl 1159.53012, MR 2272881, 10.2969/jmsj/06110315
Reference: [12] Maeda, S., Ohnita, Y.: Helical geodesic immersions into complex space forms.Geom. Dedicata 30 (1989), 93-114. Zbl 0669.53042, MR 0995941, 10.1007/BF02424315
Reference: [13] Maeda, S., Tanabe, H.: A characterization of the homogeneous ruled real hypersurface in a complex hyperbolic space in terms of the first curvature of some integral curves.Arch. Math. 105 (2015), 593-599. Zbl 1329.53032, MR 3422863, 10.1007/s00013-015-0839-1
Reference: [14] Niebergall, R., Ryan, P. J.: Real hypersurfaces in complex space forms.Tight and Taut Submanifolds. Based on the Workshop on Differential Systems, Submanifolds and Control Theory, Berkeley, CA, USA, 1994 Math. Sci. Res. Inst. Publ. 32, Cambridge University Press, Cambridge (1997), 233-305. Zbl 0904.53005, MR 1486875
.

Files

Files Size Format View
CzechMathJ_69-2019-4_7.pdf 318.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo