Title:
|
The Wells map for abelian extensions of 3-Lie algebras (English) |
Author:
|
Tan, Youjun |
Author:
|
Xu, Senrong |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
4 |
Year:
|
2019 |
Pages:
|
1133-1164 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The Wells map relates automorphisms with cohomology in the setting of extensions of groups and Lie algebras. We construct the Wells map for some abelian extensions $0\rightarrow A\hookrightarrow L\stackrel {\pi }{\rightarrow } B\rightarrow 0$ of 3-Lie algebras to obtain obstruction classes in $H^1(B,A)$ for a pair of automorphisms in ${\rm Aut}(A)\times {\rm Aut}(B)$ to be inducible from an automorphism of $L$. Application to free nilpotent 3-Lie algebras is discussed. (English) |
Keyword:
|
automorphisms of 3-Lie algebras |
Keyword:
|
representations of 3-Lie algebras |
Keyword:
|
abelian extensions |
Keyword:
|
cohomology |
Keyword:
|
free nilpotent 3-Lie algebras |
MSC:
|
16E40 |
MSC:
|
17A36 |
MSC:
|
17A42 |
idZBL:
|
07144882 |
idMR:
|
MR4039627 |
DOI:
|
10.21136/CMJ.2019.0098-18 |
. |
Date available:
|
2019-11-28T08:54:05Z |
Last updated:
|
2022-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147921 |
. |
Reference:
|
[1] Baer, R.: Erweiterung von Gruppen und ihren Isomorphismen.Math. Z. 38 German (1934), 375-416. Zbl 0009.01101, MR 1545456, 10.1007/bf01170643 |
Reference:
|
[2] Bardakov, V. G., Singh, M.: Extensions and automorphisms of Lie algebras.J. Algebra Appl. 16 (2017), Article ID 1750162, 15 pages. Zbl 06745716, MR 3661629, 10.1142/s0219498817501626 |
Reference:
|
[3] Daletskii, Y. L., Takhtajan, L. A.: Leibniz and Lie algebra structures for Nambu algebra.Lett. Math. Phys. 39 (1997), 127-141. Zbl 0869.58024, MR 1437747, 10.1023/a:1007316732705 |
Reference:
|
[4] Filippov, V. T.: $n$-Lie algebras.Sib. Math. J. 26 (1985), 879-891 translation from Sibirsk. Mat. Zh. 26 1985 126-140. Zbl 0594.17002, MR 0816511, 10.1007/bf00969110 |
Reference:
|
[5] Hilton, P. J., Stammbach, U.: A Course in Homological Algebra.Graduate Texts in Mathematics 4, Springer, New York (1997). Zbl 0863.18001, MR 1438546, 10.1007/978-1-4419-8566-8 |
Reference:
|
[6] Jin, P.: Automorphisms of groups.J. Algebra 312 (2007), 562-569. Zbl 1131.20037, MR 2333172, 10.1016/j.jalgebra.2007.03.009 |
Reference:
|
[7] Jin, P., Liu, H.: The Wells exact sequence for the automorphism group of a group extension.J. Algebra 324 (2010), 1219-1228. Zbl 1211.20044, MR 2671802, 10.1016/j.jalgebra.2010.04.034 |
Reference:
|
[8] Kasymov, Sh. M.: Theory of $n$-Lie algebras.Algebra Logic 26 (1987), 155-166 translation from Algebra Logika 26 1987 277-297. Zbl 0658.17003, MR 0962883, 10.1007/bf02009328 |
Reference:
|
[9] Passi, I. B. S., Singh, M., Yadav, M. K.: Automorphisms of abelian group extensions.J. Algebra 324 (2010), 820-830. Zbl 1209.20021, MR 2651570, 10.1016/j.jalgebra.2010.03.029 |
Reference:
|
[10] Robinson, D. J. S.: Automorphisms of group extensions.Note Mat. 33 (2013), 121-129. Zbl 1286.20029, MR 3071316, 10.1285/i15900932v33n1p121 |
Reference:
|
[11] Takhtajan, L.: On foundation of the generalized Nambu mechanics.Commun. Math. Phys. 160 (1994), 295-315. Zbl 0808.70015, MR 1262199, 10.1007/bf02103278 |
Reference:
|
[12] Takhtajan, L. A.: Higher order analog of Chevalley-Eilenberg complex and deformation theory of $n$-gebras.St. Petersbg. Math. J. 6 (1995), 429-438 translation from Algebra Anal. 6 1994 262-272. Zbl 0833.17021, MR 1290830 |
Reference:
|
[13] Wells, C.: Automorphisms of group extensions.Trans. Am. Math. Soc. 155 (1971), 189-194. Zbl 0221.20054, MR 0272898, 10.2307/1995472 |
Reference:
|
[14] Xu, S.: Cohomology, derivations and abelian extensions of 3-Lie algebras.J. Algebra Appl. 18 (2019), Article ID 1950130, 26 pages. MR 3977791, 10.1142/S0219498819501305 |
. |