Previous |  Up |  Next

Article

Title: Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays (English)
Author: Zhang, Tianwei
Author: Xu, Lijun
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 4
Year: 2019
Pages: 690-713
Summary lang: English
.
Category: math
.
Summary: By using the semi-discrete method of differential equations, a new version of discrete analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which gives a more accurate characterization for continuous-time stochastic SICNNs than that by Euler scheme. Firstly, the existence of the 2th mean almost periodic sequence solution of the discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder inequality and Krasnoselskii's fixed point theorem. Secondly, the moment global exponential stability of the discrete-time stochastic SICNNs is also studied by using some analytical skills and the proof of contradiction. Finally, two examples are given to demonstrate that our results are feasible. By numerical simulations, we discuss the effect of stochastic perturbation on the almost periodicity and global exponential stability of the discrete-time stochastic SICNNs. (English)
Keyword: semi-discrete method
Keyword: stochastic
Keyword: Krasnoselskii's fixed point theorem
Keyword: almost periodicity
Keyword: global exponential stability
MSC: 39A24
MSC: 39A30
MSC: 39A50
MSC: 92B20
idZBL: Zbl 07177911
idMR: MR4043543
DOI: 10.14736/kyb-2019-4-0690
.
Date available: 2020-01-10T14:22:25Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147964
.
Reference: [1] Arnold, L., Tudor, C.: Stationary and almost periodic solutions of almost periodic affine stochastic differential equations..Stochastics and Stochast. Reports 64 (1998), 177-193. MR 1709282, 10.1080/17442509808834163
Reference: [2] Arunkumar, A., Sakthivel, R., Mathiyalagan, K., Park, J. H.: Robust stochastic stability of discrete-time fuzzy Markovian jump neural networks..ISA Transactions 53 (2014), 1006-1014. 10.1016/j.isatra.2014.05.002
Reference: [3] Bashkirtseva, I.: Controlling the stochastic sensitivity in thermochemical systems under incomplete information..Kybernetika 54 (2018), 96-109. MR 3780958, 10.14736/kyb-2018-1-0096
Reference: [4] Bezandry, P. H., Diagana, T.: Almost Periodic Stochastic Processes..Springer, New York 2011. MR 2761071, 10.1007/978-1-4419-9476-9
Reference: [5] Bouzerdoum, A., Pinter, R. B.: Shunting inhibitory cellular neural networks: derivation and stability analysis..IEEE Trans. Circuits Systems 1 - Fundament. Theory Appl. 40 (1993), 215-221. MR 1232563, 10.1109/81.222804
Reference: [6] Chen, A., Cao, J., Huang, L.: Almost periodic solution of shunting inhibitory CNNs with delays..Phys. Lett. A 298 (2002), 161-170. MR 1917000, 10.1016/s0375-9601(02)00469-3
Reference: [7] Dorogovtsev, A. Y., Ortega, O. A.: On the existence of periodic solutions of a stochastic equation in a Hilbert space..Visnik Kiiv. Univ. Ser. Mat. Mekh. 30 (1988), 21-30. MR 1004452
Reference: [8] Du, Bo, Liu, Y. R., Abbas, I. A.: Existence and asymptotic behavior results of periodic solution for discrete-time neutral-type neural networks..J. Frank. Inst. 353 (2016), 448-461. MR 3448152, 10.1016/j.jfranklin.2015.11.013
Reference: [9] Fan, Q. Y., Shao, J. Y.: Positive almost periodic solutions for shunting inhibitory cellular neural networks with time-varying and continuously distributed delays..Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 1655-1663. MR 2576792, 10.1016/j.cnsns.2009.06.026
Reference: [10] Hu, M. F., Cao, J. D., Hua, A. H.: Mean square exponential stability for discrete-time stochastic switched static neural networks with randomly occurring nonlinearities and stochastic delay..Neurocomputing 129 (2014), 476-481. MR 3077664, 10.1016/j.neucom.2013.09.011
Reference: [11] Hu, S. G., Huang, C. M., Wu, F. K.: Stochastic Differential Equations..Science Press, Beijing 2008. MR 0701398, 10.1142/9789812774798\_0002
Reference: [12] Hu, S., Wang, J.: Global robust stability of a class of discrete-time interval neural networks..IEEE Trans. Circuits Syst. I Regul. Pap. 53 (2006), 129-138. MR 2212239, 10.1109/tcsi.2005.854288
Reference: [13] Huang, Z. K., Mohamad, S., Gao, F.: Multi-almost periodicity in semi-discretizations of a general class of neural networks..Math. Computers Simul. 101 (2014), 43-60. MR 3199946, 10.1016/j.matcom.2013.05.017
Reference: [14] Huang, Z. K., Wang, X. H., Gao, F.: The existence and global attractivity of almost periodic sequence solution of discrete-time neural networks..Physics Lett. A 350 (2006), 182-191. MR 2344928, 10.1016/j.physleta.2005.10.022
Reference: [15] Huang, Z. K., Wang, X. H., Xia, Y. H.: Exponential attractor of $\kappa$-almost periodic sequence solution of discrete-time bidirectional neural networks..Simul. Modell. Practice Theory 18 (2010), 317-337. 10.1016/j.simpat.2009.11.007
Reference: [16] Kawata, T.: Almost Periodic Weakly Stationary Processes, Statistics and Probability: Essays in Honor of C. R. Rao..North-Holland, Amsterdam 1982, pp. 383-396. MR 0659491
Reference: [17] Kuang, J. C.: Applied Inequalities..Shandong Science and Technology Press, Shandong 2012.
Reference: [18] Lan, Q. X., Niu, H. W., Liu, Y. M., Xu, H. F.: Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems..Kybernetika 53 (2017), 780-802. MR 3750103, 10.14736/kyb-2017-5-0780
Reference: [19] Liu, B., Huang, L.: Existence and stability of almost periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays..Phys. Lett. A 349 (2006), 177-186. MR 2343183, 10.1016/j.physleta.2005.09.023
Reference: [20] Liu, D., Wang, L.J., Pan, Y. N., Ma, H. Y.: Mean square exponential stability for discrete-time stochastic fuzzy neural networks with mixed time-varying delay..Neurocomputing 171 (2016), 1622-1628. 10.1016/j.neucom.2015.06.045
Reference: [21] Mohamad, S.: Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks..Physica D 159 (2001), 233-251. MR 1868528, 10.1016/s0167-2789(01)00344-x
Reference: [22] Mohamad, S., Gopalsamy, K.: Dynamics of a class of discrete-time neural networks and their continuous-time counterparts..Math. Computers Simul. 53 (2000), 1-39. MR 1777734, 10.1016/s0378-4754(00)00168-3
Reference: [23] Mohamad, S., Gopalsamy, K.: Exponential stability of continuous-time and discrete-time cellular neural networks with delays..Appl. Math. Comput. 135 (2003), 17-38. MR 1934312, 10.1016/s0096-3003(01)00299-5
Reference: [24] Mohamad, S., Naim, A. G.: Discrete-time analogues of integro-differential equations modelling bidirectional neural networks..J. Comput. Appl. Math. 138 (2002), 1-20. MR 1876679, 10.1016/s0377-0427(01)00366-1
Reference: [25] Nagamani, G., Ramasamy, S., Balasubramaniam, P.: Robust dissipativity and passivity analysis for discrete-time stochastic neural networks with time-varying delay..Complexity 21 (2014), 47-58. MR 3457542, 10.1002/cplx.21614
Reference: [26] Ou, Y., Liu, H., Si, Y., Feng, Z.: Stability analysis of discrete-time stochastic neural networks with time-varying delays..Neurocomputing 73 (2010), 740-748. 10.1016/j.neucom.2009.10.017
Reference: [27] Raj, S., Ramachandran, R., Rajendiran, S., Cao, J. D.: Passivity analysis of uncertain stochastic neural network with leakage and distributed delays under impulsive perturbations..Kybernetika 54 (2018), 3-29. MR 3780953, 10.14736/kyb-2018-1-0003
Reference: [28] Şaylı, M., Yılmaz, E.: Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays..Neural Networks 68 (2015), 1-11. 10.1016/j.neunet.2015.04.004
Reference: [29] Smart, D. R.: Fixed Point Theorems..Cambridge University Press, Cambridge 1980. MR 0467717
Reference: [30] Swift, R. J.: Almost periodic harmonizable processes..Georgian Math. J. 3 (1996), 275-292. MR 1388674, 10.1007/bf02280009
Reference: [31] Tudor, C.: Almost periodic solutions of affine stochastic evolutions equations..Stochastics and Stochast. Reports 38 (1992), 251-266. MR 1274905, 10.1080/17442509208833758
Reference: [32] Wang, P., Li, B., Li, Y. K.: Square-mean almost periodic solutions for impulsive stochastic shunting inhibitory cellular neural networks with delays..Neurocomputing 167 (2015), 76-82. MR 2343183, 10.1016/j.neucom.2015.04.089
Reference: [33] Wang, J., Zhang, X. M., Han, Q. L.: Event-Triggered generalized dissipativity filtering for neural networks with time-varying delays..IEEE Trans. Neural Networks Learning Systems 27 (2016), 77-88. MR 3465626, 10.1109/tnnls.2015.2411734
Reference: [34] Xiong, W., Cao, J. D.: Global exponential stability of discrete-time Cohen-Grossberg neural networks..Neurocomputing 64 (2005), 433-446. 10.1016/j.neucom.2004.08.004
Reference: [35] Xiong, L. L., Cheng, J., Cao, J. D., Liu, Z. X.: Novel inequality with application to improve the stability criterion for dynamical systems with two additive time-varying delays..Applied Math. Comput. 321 (2018), 672-688. MR 3732406, 10.1016/j.amc.2017.11.020
Reference: [36] Xu, C. J., Li, P. L.: On anti-periodic solutions for neutral shunting inhibitory cellular neural networks with time-varying delays and D operator..Neurocomputing 275 (2018), 377-382. 10.1016/j.neucom.2017.08.030
Reference: [37] Yang, L., Li, Y. K.: Periodic solutions for stochastic shunting inhibitory cellular neural networks with distributed delays..Advances Difference Equations 2014 (2014), 1-37. MR 3213930, 10.1186/1687-1847-2014-37
Reference: [38] Yao, L. G.: Global exponential convergence of neutral type shunting inhibitory cellular neural networks with d operator..Neural Process. Lett. 45 (2017), 401-409. 10.1007/s11063-016-9529-7
Reference: [39] Zhang, T. W.: Multiplicity of positive almost periodic solutions in a delayed Hassell-Varleytype predator-prey model with harvesting on prey..Math. Meth. Appl. Sci. 37 (2014), 686-697. MR 3180630, 10.1002/mma.2826
Reference: [40] Zhang, T. W.: Almost periodic oscillations in a generalized Mackey-Glass model of respiratory dynamics with several delays..Int. J. Biomath. 7 (2014), 1450029 (22 pages). MR 3210478, 10.1002/mma.2826
Reference: [41] Zhang, T. W., Gan, X. R.: Almost periodic solutions for a discrete fishing model with feedback control and time delays..Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 150-163. MR 3142456, 10.1016/j.cnsns.2013.06.019
Reference: [42] Zhang, X. M., Han, Q. L.: Global asymptotic stability for a class of generalized neural networks with interval time-varying delays..IEEE Trans. Neural Networks 22 (2011), 1180-1192. 10.1109/tnn.2011.2147331
Reference: [43] Zhang, X. M., Han, Q. L.: An overview of recent developments in Lyapunov-Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays..Neurocomputing 313 (2018), 392-401. 10.1016/j.neucom.2018.06.038
Reference: [44] Zhang, X. M., Han, Q. L., Zeng, Z. G.: Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities..IEEE Trans. Cybernet. 48 (2018), 1660-1671. 10.1109/tcyb.2017.2776283
Reference: [45] Zhang, T. W., Liao, Y. Z.: Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay..Kybernetika 53 (2017), 612-629. MR 3730255, 10.14736/kyb-2017-4-0612
Reference: [46] Zhang, H. Y., Qiu, Z. P., Xiong, L. L.: Stochastic stability criterion of neutral-type neural networks with additive time-varying delay and uncertain semi-Markov jump..Neurocomputing 333 (2019), 395-406. 10.1016/j.neucom.2018.12.028
Reference: [47] Zhang, T. W., Xiong, L. L.: Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative..Applied Mathematics Letters 101 (2020), 106072. MR 4018066, 10.1016/j.aml.2019.106072
Reference: [48] Zhang, T. W., Yang, L., Xu, L. J.: Stage-structured control on a class of predator-prey system in almost periodic environment..International Journal of Control 2019 (2019), in print. 10.1080/00207179.2018.1513165
Reference: [49] Zhang, Z. Q., Zhou, D. M.: Existence and global exponential stability of a periodic solution for a discrete-time interval general BAM neural networks..J. Frank. Inst. 347 (2010), 763-780. MR 2645389, 10.1016/j.jfranklin.2010.02.007
Reference: [50] Zhao, H., Sun, L., Wang, G.: Periodic oscillation of discrete-time bidirectional associative memory neural networks..Neurocomputing 70 (2007), 2924-2930. 10.1016/j.neucom.2006.11.010
.

Files

Files Size Format View
Kybernetika_55-2019-4_6.pdf 602.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo