Previous |  Up |  Next

Article

Title: Multiagent opinion dynamics influenced by individual susceptibility and anchoring effect (English)
Author: Chen, Zihan
Author: Xing, Yu
Author: Qin, Huashu
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 4
Year: 2019
Pages: 714-726
Summary lang: English
.
Category: math
.
Summary: This paper studies a new model of social opinion dynamics in multiagent system by counting in two important factors, individual susceptibility and anchoring effect. Different from many existing models only focusing on one factor, this model can exhibit not only agreement phenomena, but also disagreement phenomena such as clustering and fluctuation, during opinion evolution. Then we provide several conditions to show how individual susceptibility and anchoring effect work on steady-state behaviors in some specific situations, with strict mathematical analysis. Finally, we investigate the model for general situations via simulations. (English)
Keyword: opinion dynamics
Keyword: individual susceptibility
Keyword: anchoring effect
Keyword: steady-state behavior
MSC: 91C99
MSC: 91D30
MSC: 91E99
idZBL: Zbl 07177912
idMR: MR4043544
DOI: 10.14736/kyb-2019-4-0714
.
Date available: 2020-01-10T14:22:41Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147965
.
Reference: [1] Acemoğlu, D., Como, G., Fagnani, F., Ozdaglar, A.: Opinion fluctuations and disagreement in social networks..Math. Oper. Res. 38 (2013), 1-27. MR 3029476, 10.1287/moor.1120.0570
Reference: [2] Bindel, D., Kleinberg, J., Oren, S.: How bad is forming your own opinion..Games Econ. Behav. (2015), 248-265. MR 3377660, 10.1016/j.geb.2014.06.004
Reference: [3] Castellano, C., Castellano, F., Vittorio, L.: Statistical physics of social dynamics..Rev. Mod. Phys. 8 (2009), 2, 591-646. 10.1103/revmodphys.81.591
Reference: [4] Chen, Z., Qin, J., Li, B., Qi, H., Buchhorn, P., Shi, G.: Dynamics of opinions with social biases..Automatica 106 (2019), 374-383. MR 3954046, 10.1016/j.automatica.2019.04.035
Reference: [5] Dandekar, P., Goel, A., Lee, D. T.: Biased assimilation, homophily, and the dynamics of polarization..Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 5791-5796. MR 3065807, 10.1073/pnas.1217220110
Reference: [6] DeGroot, M. H.: Reaching a consensus..J. Am. Stat. Assoc. 69 (1974), 118-121. 10.1080/01621459.1974.10480137
Reference: [7] DeMarzo, P. M., Vayanos, D., Zwiebel, J.: Persuasion bias, social influence, and unidimensional opinions..Q. J. Econ. 118 (2003), 909-968. 10.1162/00335530360698469
Reference: [8] Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S., Lorenz, J.: Models of social influence: Towards the next frontiers..JASSS 20 (2017), 4. 10.18564/jasss.3521
Reference: [9] Friedkin, N. E., Johnsen, E. C.: Social influence and opinions..J. Math. Sociol. 15 (1990), 193-206. 10.1080/0022250x.1990.9990069
Reference: [10] Friedkin, N. E., Proskurnikov, A. V., Tempo, R., Parsegov, S. E.: Network science on belief system dynamics under logic constraints..Science 354 (2016), 321-326. MR 3561171, 10.1126/science.aag2624
Reference: [11] Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence models, analysis, and simulation..JASSS 5 (2002).
Reference: [12] Helbing, D.: Quantitative Sociodynamics: Stochastic Methods and Models of Social Interaction Processes..Springer Science and Business Media, 2010. MR 2848027
Reference: [13] Kacperski, K.: Opinion formation model with strong leader and external impact: a mean field approach..Physica A 269 (1999), 511-526. 10.1016/s0378-4371(99)00174-0
Reference: [14] Kramer, G. H.: Short-term fluctuations in US voting behavior, 1896 - 1964..Am. Polit. Sci. Rev. 65 (1971), 131-143. 10.2307/1955049
Reference: [15] Lawrence, E., Farrell, J., Farrell, H.: Self-segregation or deliberation? Blog readership, participation, and polarization in American politics..Perspect. Polit. 8 (2010), 141-157. 10.1017/s1537592709992714
Reference: [16] Li, L., Scaglione, A., Swami, A., Zhao, Q.: Consensus, polarization and clustering of opinions in social networks..IEEE J. Sel. Areas Commun. 31 (2013), 1072-1083. 10.1109/jsac.2013.130609
Reference: [17] Myers, D. G.: Social Psychology..McGraw-Hill, New York 1993.
Reference: [18] Proskurnikov, A. V., Tempo, R.: A tutorial on modeling and analysis of dynamic social networks. Part I..Ann. Rev. Control 43 (2017), 65-79. MR 3880766, 10.1016/j.arcontrol.2017.03.002
Reference: [19] Scott, J.: Social Network Analysis..Sage, 2017. 10.4135/9781483381411.n575
Reference: [20] Shi, G., Proutiere, A., Johansson, M., Baras, J. S., Johansson, K. H.: The evolution of beliefs over signed social networks..Oper. Res. 64 (2016), 585-604. MR 3515199, 10.1287/opre.2015.1448
Reference: [21] Tversky, A., Kahneman, D.: Advances in Prospect Theory: Cumulative Representation of Uncertainty..J. Risk Uncertain. 5 (1992), 297-323. 10.1007/bf00122574
Reference: [22] Xing, Y., Hong, Y., Fang, H.: A Novel Opinion Model for Complex Macro-Behaviors of Mass Opinion..Sci. China-Inf. Sci.
Reference: [23] Yildiz, E., Ozdaglar, A., Acemoglu, D., Saberi, A., Scaglione, A.: Binary opinion dynamics with stubborn agents..ACM Trans. Econ. Comput. 1 (2013), 4, 1-30. 10.1145/2538508
Reference: [24] Zhang, J.: Convergence analysis for asymmetric Deffuant-Weisbuch model..Kybernetika 50 (2014), 32-45. MR 3195003, 10.14736/kyb-2014-1-0032
Reference: [25] Zhang, J., Hong, Y., Hu, X.: Multiagent opinion dynamics of bounded confidence with nonlocal aggregative interaction..SIAM J. Control Optim. 55 (2017), 2543-2573. MR 3686786, 10.1137/16m1083268
.

Files

Files Size Format View
Kybernetika_55-2019-4_7.pdf 936.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo