Previous |  Up |  Next

Article

Title: Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis (English)
Author: Chauhan, Astha
Author: Arora, Rajan
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 27
Issue: 2
Year: 2019
Pages: 171-185
Summary lang: English
.
Category: math
.
Summary: In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation laws are determined for the time fractional Kupershmidt equation with the help of new conservation theorem and fractional Noether operators. The explicit analytic solutions of fractional Kupershmidt equation are obtained using the power series method. Also, the convergence of the power series solutions is discussed by using the implicit function theorem. (English)
Keyword: Time fractional Kupershmidt equation
Keyword: Fractional Lie symmetry method
Keyword: Riemann-Lioville's fractional derivative
Keyword: Conservation laws
Keyword: Power series solution.
MSC: 26A33
MSC: 34A08
MSC: 76M60
idZBL: Zbl 1464.34018
idMR: MR4058172
.
Date available: 2020-02-20T09:00:19Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147988
.
Reference: [1] Arora, R., Chauhan, A.: Lie Symmetry Analysis and Some Exact Solutions of $(2+1)$-dimensional KdV-Burgers Equation.International Journal of Applied and Computational Mathematics, 5, 1, 2019, 15, Springer, MR 3896708, 10.1007/s40819-019-0603-5
Reference: [2] Baleanu, D., Inc, M., Yusuf, A., Aliyu, A.I.: Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov-Kuznetsov equation.Nonlinear Analysis: Modelling and Control, 22, 6, 2017, 861-876, MR 3724625, 10.15388/NA.2017.6.9
Reference: [3] Baleanu, D., Yusuf, A., Aliyu, A.I.: Space-time fractional Rosenou-Haynam equation: Lie symmetry analysis, explicit solutions and conservation laws.Advances in Difference Equations, 2018, 1, 2018, 46, Springer, MR 3757664, 10.1186/s13662-018-1468-3
Reference: [4] Bluman, G.W., Cole, J.D.: The general similarity solution of the heat equation.Journal of Mathematics and Mechanics, 18, 11, 1969, 1025-1042, JSTOR, MR 0293257
Reference: [5] Bluman, G.W., Kumei, S.: Use of group analysis in solving overdetermined systems of ordinary differential equations.Journal of Mathematical Analysis and Applications, 138, 1, 1989, 95-105, Academic Press, MR 0988322, 10.1016/0022-247X(89)90322-3
Reference: [6] Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations.Nonlinear Dynamics, 29, 1-4, 2002, 3-22, Springer, MR 1926466, 10.1023/A:1016592219341
Reference: [7] El-Nabulsi, R.A.: Fractional functional with two occurrences of integrals and asymptotic optimal change of drift in the Black-Scholes model.Acta Mathematica Vietnamica, 40, 4, 2015, 689-703, Springer, MR 3412572, 10.1007/s40306-014-0079-7
Reference: [8] Feng, L.L., Tian, S.F., Wang, X.B., Zhang, T.T.: Lie Symmetry Analysis, Conservation Laws and Exact Power Series Solutions for Time-Fractional Fordy-Gibbons Equation.Communications in Theoretical Physics, 66, 3, 2016, 321, IOP Publishing, MR 3674580, 10.1088/0253-6102/66/3/321
Reference: [9] Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Symmetry properties of fractional diffusion equations.Physica Scripta, 2009, T136, 2009, 014016, IOP Publishing,
Reference: [10] Hilfer, R.: Applications of fractional calculus in physics.35, 12, 2000, World Scientific, Zbl 0998.26002, MR 1890104
Reference: [11] Inc, M., Yusuf, A., Aliyu, A.I., Baleanu, D.: Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations.Physica A: Statistical Mechanics and its Applications, 496, 2018, 371-383, Elsevier, MR 3759755, 10.1016/j.physa.2017.12.119
Reference: [12] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Fractional differential equations: A emergent field in applied and mathematical sciences.Factorization, Singular Operators and Related Problems, 2003, 151-173, Springer, MR 2001597
Reference: [13] Kiryakova, V.S.: Generalized fractional calculus and applications.1993, CRC Press, MR 1265940
Reference: [14] Lie, S.: Theorie der Transformationsgruppen I.Mathematische Annalen, 16, 4, 1880, 441-528, Springer, MR 1510035, 10.1007/BF01446218
Reference: [15] Liu, W., Chen, K.: The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations.Pramana, 81, 3, 2013, 377-384, Springer, 10.1007/s12043-013-0583-7
Reference: [16] Luchko, Y., Gorenflo, R.: Scale-invariant solutions of a partial differential equation of fractional order.Fractional Calculus and Applied Analysis, 3, 1, 1998, 63-78, MR 1662409
Reference: [17] Lukashchuk, S.Y.: Conservation laws for time-fractional subdiffusion and diffusion-wave equations.Nonlinear Dynamics, 80, 1--2, 2015, 791-802, Springer, MR 3324298, 10.1007/s11071-015-1906-7
Reference: [18] Noether, E.: Invariant variation problems.Transport Theory and Statistical Physics, 1, 3, 1971, 186-207, Taylor & Francis, MR 0406752, 10.1080/00411457108231446
Reference: [19] Olver, P.J.: Applications of Lie groups to differential equations.107, 2000, Springer Science & Business Media, MR 0836734
Reference: [20] Ortigueira, M.D., Machado, J.A.T.: What is a fractional derivative?.Journal of computational Physics, 293, 2015, 4-13, Elsevier, MR 3342452, 10.1016/j.jcp.2014.07.019
Reference: [21] Osler, T.J.: Leibniz rule for fractional derivatives generalized and an application to infinite series.SIAM Journal on Applied Mathematics, 18, 3, 1970, 658-674, SIAM, MR 0260942, 10.1137/0118059
Reference: [22] Pandir, Y., Gurefe, Y., Misirli, E.: New exact solutions of the time-fractional nonlinear dispersive KdV equation.International Journal of Modeling and Optimization, 3, 4, 2013, 349-351, IACSIT Press, MR 2928587, 10.7763/IJMO.2013.V3.296
Reference: [23] Podlubny, I.: Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications.1998, Elsevier, MR 1658022
Reference: [24] Qin, Ch.Y., Tian, Sh.F., Wang, X.B., Zhang, T.T.: Lie symmetries, conservation laws and explicit solutions for time fractional Rosenau-Haynam equation.Communications in Theoretical Physics, 67, 2, 2017, 157, IOP Publishing, MR 3610395
Reference: [25] Ray, S.S., Sahoo, S., Das, S.: Formulation and solutions of fractional continuously variable order mass-spring-damper systems controlled by viscoelastic and viscous-viscoelastic dampers.Advances in Mechanical Engineering, 8, 5, 2016, 1-17, SAGE Publications Sage UK: London, England,
Reference: [26] Richard, H.: Fractional Calculus: an introduction for physicists.2014, World Scientific,
Reference: [27] Rossikhin, Y.A., Shitikova, M.V.: Analysis of dynamic behaviour of viscoelastic rods whose rheological models contain fractional derivatives of two different orders.ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 81, 6, 2001, 363-376, Wiley Online Library, MR 1834711, 10.1002/1521-4001(200106)81:6<363::AID-ZAMM363>3.0.CO;2-9
Reference: [28] Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results.Applied Mechanics Reviews, 63, 1, 2010, 010801(1-52), American Society of Mechanical Engineers, 10.1115/1.4000563
Reference: [29] Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations.Journal of Mathematical Analysis and Applications, 393, 2, 2012, 341-347, Elsevier, MR 2921677, 10.1016/j.jmaa.2012.04.006
Reference: [30] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: theory and applications.1993, Gordon and Breach, Switzerland. MR 1347689
Reference: [31] Shang, N., Zheng, B.: Exact solutions for three fractional partial differential equations by the $(G'/G)$ method.Int. J. Appl. Math, 43, 3, 2013, 114-119, MR 3113392
Reference: [32] Singla, K., Gupta, R.K.: Space-time fractional nonlinear partial differential equations: symmetry analysis and conservation laws.Nonlinear Dynamics, 89, 1, 2017, 321-331, Springer, MR 3663696, 10.1007/s11071-017-3456-7
Reference: [33] Tang, B., He, Y., Wei, L., Zhang, X.: A generalized fractional sub-equation method for fractional differential equations with variable coefficients.Physics Letters A, 376, 38--39, 2012, 2588-2590, Elsevier, MR 2961121, 10.1016/j.physleta.2012.07.018
Reference: [34] Tarasov, V.E.: On chain rule for fractional derivatives.Communications in Nonlinear Science and Numerical Simulation, 30, 1--3, 2016, 1-4, Elsevier, MR 3420022, 10.1016/j.cnsns.2015.06.007
Reference: [35] Wang, G.W., Liu, X.Q., Zhang, Y.Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation.Communications in Nonlinear Science and Numerical Simulation, 18, 9, 2013, 2321-2326, Elsevier, MR 3042039, 10.1016/j.cnsns.2012.11.032
Reference: [36] Wang, X.B., Tian, S.F., Qin, Ch.Y., Zhang, T.T.: Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation.EPL (Europhysics Letters), 114, 2, 2016, 20003, IOP Publishing, MR 3884385
Reference: [37] Wang, X.B., Tian, S.F., Qin, Ch.Y., Zhang, T.T.: Lie symmetry analysis, conservation laws and analytical solutions of a time-fractional generalized KdV-type equation.Journal of Nonlinear Mathematical Physics, 24, 4, 2017, 516-530, Taylor & Francis, MR 3698650, 10.1080/14029251.2017.1375688
Reference: [38] Wang, X.B., Tian, S.F.: Lie symmetry analysis, conservation laws and analytical solutions of the time-fractional thin-film equation.Computational and Applied Mathematics, 2018, 1-13, Springer, MR 3885819
Reference: [39] Yıldırım, A.: An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method.International Journal of Nonlinear Sciences and Numerical Simulation, 10, 4, 2009, 445-450, De Gruyter,
Reference: [40] Yusuf, A., Aliyu, A.I., Baleanu, D.: Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers-Huxley equation.Optical and Quantum Electronics, 50, 2, 2018, 94, Springer, MR 3739715, 10.1007/s11082-018-1373-8
Reference: [41] Zhang, S.: A generalized Exp-function method for fractional Riccati differential equations.Communications In Fractional Calculus, 1, 2010, 48-51,
Reference: [42] Zhang, Y., Mei, J., Zhang, X.: Symmetry properties and explicit solutions of some nonlinear differential and fractional equations.Applied Mathematics and Computation, 337, 2018, 408-418, Elsevier, MR 3827622, 10.1016/j.amc.2018.05.030
Reference: [43] Zhdanov, R.Z.: Conditional Lie-Backlund symmetry and reduction of evolution equations.Journal of Physics A: Mathematical and General, 28, 13, 1995, 3841, IOP Publishing, MR 1352384, 10.1088/0305-4470/28/13/027
.

Files

Files Size Format View
ActaOstrav_27-2019-2_7.pdf 355.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo