Previous |  Up |  Next

Article

Title: The fan graph is determined by its signless Laplacian spectrum (English)
Author: Liu, Muhuo
Author: Yuan, Yuan
Author: Chandra Das, Kinkar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 21-31
Summary lang: English
.
Category: math
.
Summary: Given a graph $G$, if there is no nonisomorphic graph $H$ such that $G$ and $H$ have the same signless Laplacian spectra, then we say that $G$ is \hbox {$Q$-DS}. In this paper we show that every fan graph $F_n$ is \hbox {$Q$-DS}, where $F_{n}=K_{1}\vee P_{n-1}$ and $n\geq 3$. (English)
Keyword: signless Laplacian spectrum
Keyword: join graph
Keyword: graph determined by its spectrum
MSC: 05C50
MSC: 15A18
idZBL: 07217120
idMR: MR4078345
DOI: 10.21136/CMJ.2019.0159-18
.
Date available: 2020-03-10T10:13:17Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148041
.
Reference: [1] Cvetković, D. M., Doob, M., Gutman, I., Torgašev, A.: Recent Results in the Theory of Graph Spectra.Annals of Discrete Mathematics 36, North-Holland, Amsterdam (1988). Zbl 0634.05054, MR 0926481, 10.1016/S0167-5060(08)70277-2
Reference: [2] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs.Linear Algebra Appl. 423 (2007), 155-171. Zbl 1113.05061, MR 2312332, 10.1016/j.laa.2007.01.009
Reference: [3] Das, K. Ch.: The Laplacian spectrum of a graph.Comput. Math. Appl. 48 (2004), 715-724. Zbl 1058.05048, MR 2105246, 10.1016/j.camwa.2004.05.005
Reference: [4] Das, K. Ch.: On conjectures involving second largest signless Laplacian eigenvalue of graphs.Linear Algebra Appl. 432 (2010), 3018-3029. Zbl 1195.05040, MR 2639266, 10.1016/j.laa.2010.01.005
Reference: [5] Das, K. Ch., Liu, M.: Complete split graph determined by its (signless) Laplacian spectrum.Discrete Appl. Math. 205 (2016), 45-51. Zbl 1333.05180, MR 3478617, 10.1016/j.dam.2016.01.003
Reference: [6] Freitas, M. A. A. de, Abreu, N. M. M. de, Del-Vecchio, R. R., Jurkiewicz, S.: Infinite families of $Q$-integral graphs.Linear Algebra Appl. 432 (2010), 2352-2360. Zbl 1219.05158, MR 2599865, 10.1016/j.laa.2009.06.029
Reference: [7] Haemers, W. H.: Interlacing eigenvalues and graphs.Linear Algebra Appl. 226-228 (1995), 593-616. Zbl 0831.05044, MR 1344588, 10.1016/0024-3795(95)00199-2
Reference: [8] Liu, M.: Some graphs determined by their (signless) Laplacian spectra.Czech. Math. J. 62 (2012), 1117-1134. Zbl 1274.05299, MR 3010260, 10.1007/s10587-012-0067-9
Reference: [9] Liu, M., Liu, B.: Extremal Theory of Graph Spectrum.Mathematical Chemistry Monographs 22, University of Kragujevac and Faculty of Science Kragujevac, Kragujevac (2018).
Reference: [10] Liu, X., Zhang, Y., Gui, X.: The multi-fan graphs are determined by their Laplacian spectra.Discrete Math. 308 (2008), 4267-4271. Zbl 1225.05172, MR 2427757, 10.1016/j.disc.2007.08.002
Reference: [11] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?.Linear Algebra Appl. 373 (2003), 241-272. Zbl 1026.05079, MR 2022290, 10.1016/S0024-3795(03)00483-X
Reference: [12] Wang, J., Zhao, H., Huang, Q.: Spectral characterization of multicone graphs.Czech. Math. J. 62 (2012), 117-126. Zbl 1249.05256, MR 2899739, 10.1007/s10587-012-0021-x
.

Files

Files Size Format View
CzechMathJ_70-2020-1_3.pdf 294.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo