Keywords: signless Laplacian spectrum; join graph; graph determined by its spectrum
Summary: Given a graph $G$, if there is no nonisomorphic graph $H$ such that $G$ and $H$ have the same signless Laplacian spectra, then we say that $G$ is \hbox {$Q$-DS}. In this paper we show that every fan graph $F_n$ is \hbox {$Q$-DS}, where $F_{n}=K_{1}\vee P_{n-1}$ and $n\geq 3$.
[1] Cvetković, D. M., Doob, M., Gutman, I., Torgašev, A.: Recent Results in the Theory of Graph Spectra. Annals of Discrete Mathematics 36, North-Holland, Amsterdam (1988). DOI 10.1016/S0167-5060(08)70277-2 | MR 0926481 | Zbl 0634.05054
[6] Freitas, M. A. A. de, Abreu, N. M. M. de, Del-Vecchio, R. R., Jurkiewicz, S.: Infinite families of $Q$-integral graphs. Linear Algebra Appl. 432 (2010), 2352-2360. DOI 10.1016/j.laa.2009.06.029 | MR 2599865 | Zbl 1219.05158
[9] Liu, M., Liu, B.: Extremal Theory of Graph Spectrum. Mathematical Chemistry Monographs 22, University of Kragujevac and Faculty of Science Kragujevac, Kragujevac (2018).