Previous |  Up |  Next

Article

Title: Hyperbolic inverse mean curvature flow (English)
Author: Mao, Jing
Author: Wu, Chuan-Xi
Author: Zhou, Zhe
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 33-66
Summary lang: English
.
Category: math
.
Summary: We prove the short-time existence of the hyperbolic inverse (mean) curvature flow (with or without the specified forcing term) under the assumption that the initial compact smooth hypersurface of $\mathbb {R}^{n+1}$ ($n\ge 2$) is mean convex and star-shaped. Several interesting examples and some hyperbolic evolution equations for geometric quantities of the evolving hypersurfaces are shown. Besides, under different assumptions for the initial velocity, we can get the expansion and the convergence results of a hyperbolic inverse mean curvature flow in the plane $\mathbb {R}^2$, whose evolving curves move normally. (English)
Keyword: evolution equation
Keyword: hyperbolic inverse mean curvature flow
Keyword: short time existence
MSC: 58J45
MSC: 58J47
idZBL: 07217121
idMR: MR4078346
DOI: 10.21136/CMJ.2019.0162-18
.
Date available: 2020-03-10T10:13:49Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148042
.
Reference: [1] Bray, H.: Proof of the Riemannian Penrose inequality using the positive mass theorem.J. Differ. Geom. 59 (2001), 177-267. Zbl 1039.53034, MR 1908823, 10.4310/jdg/1090349428
Reference: [2] Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold.Commun. Pure Appl. Math. 69 (2016), 124-144. Zbl 1331.53078, MR 3433631, 10.1002/cpa.21556
Reference: [3] Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations. III: Functions of the eigenvalue of the Hessian.Acta Math. 155 (1985), 261-301. Zbl 0654.35031, MR 0806416, 10.1007/BF02392544
Reference: [4] Cao, F.: Geometric Curve Evolution and Image Processing.Lecture Notes in Mathematics 1805, Springer, Berlin (2003). Zbl 1290.35001, MR 1976551, 10.1007/b10404
Reference: [5] Chen, L., Mao, J.: Non-parametric inverse curvature flows in the AdS-Schwarzschild manifold.J. Geom. Anal. 28 (2018), 921-949. Zbl 1393.53056, MR 3790487, 10.1007/s12220-017-9848-6
Reference: [6] Chen, L., Mao, J., Xiang, N., Xu,, C.: Inverse mean curvature flow inside a cone in warped products.Available at https://arxiv.org/abs/1705.04865 (2017), 12 pages.
Reference: [7] Evans, L.-C.: Partial Differential Equations.Graduate Studies in Mathematics 19, American Mathematical Society, Providence (1998). Zbl 0902.35002, MR 1625845
Reference: [8] Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres.J. Differential Geom. 32 (1990), 299-314. Zbl 0708.53045, MR 1064876, 10.4310/jdg/1214445048
Reference: [9] He, C.-L., Kong, D.-X., Liu, K.-F.: Hyperbolic mean curvature flow.J. Differ. Equations 246 (2009), 373-390. Zbl 1159.53024, MR 2467029, 10.1016/j.jde.2008.06.026
Reference: [10] Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations.Mathématiques & Applications 26, Springer, Berlin (1997). Zbl 0881.35001, MR 1466700
Reference: [11] Huisken, G.: Flow by mean curvature of convex surfaces into spheres.J. Differ. Geom. 20 (1984), 237-266. Zbl 0556.53001, MR 0772132, 10.4310/jdg/1214438998
Reference: [12] Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality.J. Differ. Geom. 59 (2001), 353-437. Zbl 1055.53052, MR 1916951, 10.4310/jdg/1090349447
Reference: [13] Kong, D.-X., Liu, K.-F., Wang, Z.-G.: Hyperbolic mean curvature flow: evolution of plane curves.Acta Math. Sci., Ser B 29 (2009), 493-514. Zbl 1212.58018, MR 2514356, 10.1016/S0252-9602(09)60049-7
Reference: [14] Mao, J.: Forced hyperbolic mean curvature flow.Kodai Math. J. 35 (2012), 500-522. Zbl 1277.58012, MR 2997477, 10.2996/kmj/1352985451
Reference: [15] Marquardt, T.: Inverse mean curvature flow for star-shaped hypersurfaces evolving in a cone.J. Geom. Anal. 23 (2013), 1303-1313. Zbl 1317.53087, MR 3078355, 10.1007/s12220-011-9288-7
Reference: [16] Pipoli, G.: Inverse mean curvature flow in quaternionic hyperbolic space.Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), 153-171. Zbl 1391.53079, MR 3787725, 10.4171/RLM/798
Reference: [17] Pipoli, G.: Inverse mean curvature flow in complex hyperbolic space.Available at https://arxiv.org/abs/1610.01886 (2017), 31 pages. MR 3787725
Reference: [18] Protter, M.-H., Weinberger, H.-F.: Maximum Principles in Differential Equations.Springer, New York (1984). Zbl 0549.35002, MR 0762825
Reference: [19] Scheuer, J.: The inverse mean curvature flow in warped cylinders of non-positive radial curvature.Adv. Math. 306 (2017), 1130-1163. Zbl 1357.53080, MR 3581327, 10.1016/j.aim.2016.11.003
Reference: [20] Schneider, R.: Convex Bodies: The Brum-Minkowski Theory.Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1993). Zbl 0798.52001, MR 1216521, 10.1017/CBO9780511526282
Reference: [21] Topping, P.: Mean curvature flow and geometric inequalities.J. Reine Angew. Math. 503 (1998), 47-61. Zbl 0909.53044, MR 1650335, 10.1515/crll.1998.099
Reference: [22] Yau, S.-T.: Review of geometry and analysis.Asian J. Math. 4 (2000), 235-278. Zbl 1031.53004, MR 1803723, 10.4310/AJM.2000.v4.n1.a16
Reference: [23] Zhou, H.-Y.: Inverse mean curvature flows in warped product manifolds.J. Geom. Anal. 28 (2018), 1749-1772. Zbl 1393.53069, MR 3790519, 10.1007/s12220-017-9887-z
Reference: [24] Zhu, X.-P.: Lectures on Mean Curvature Flows.AMS/IP Studies in Advanced Mathematics 32, American Mathematical Society, Providence (2002). Zbl 1197.53087, MR 1931534, 10.1090/amsip/032
.

Files

Files Size Format View
CzechMathJ_70-2020-1_4.pdf 435.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo