Previous |  Up |  Next

Article

Title: General-affine invariants of plane curves and space curves (English)
Author: Kobayashi, Shimpei
Author: Sasaki, Takeshi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 67-104
Summary lang: English
.
Category: math
.
Summary: We present a fundamental theory of curves in the affine plane and the affine space, equipped with the general-affine groups ${\rm GA}(2)={\rm GL}(2,{\mathbb R})\ltimes {\mathbb R}^2$ and ${\rm GA}(3)={\rm GL}(3,{\mathbb R})\ltimes {\mathbb R}^3$, respectively. We define general-affine length parameter and curvatures and show how such invariants determine the curve up to general-affine motions. We then study the extremal problem of the general-affine length functional and derive a variational formula. We give several examples of curves and also discuss some relations with equiaffine treatment and projective treatment of curves. (English)
Keyword: plane curve
Keyword: space curve
Keyword: general-affine group
Keyword: general-affine curvature
Keyword: variational problem
MSC: 53A15
MSC: 53A20
MSC: 53A55
idZBL: 07217122
idMR: MR4078347
DOI: 10.21136/CMJ.2019.0165-18
.
Date available: 2020-03-10T10:14:50Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148043
.
Reference: [1] Bagderina, Y. Y.: Equivalence of third-order ordinary differential equations to Chazy equations I--XIII.Stud. Appl. Math. 120 (2008), 293-332. Zbl 1196.34047, MR 2406822, 10.1111/j.1467-9590.2008.00400.x
Reference: [2] Berzolari, L.: Sugli invarianti differenziali proiettivi delle curve di un iperspazio.Annali di Math., Ser 2 Italian 26 (1897), 1-58 \99999JFM99999 28.0584.04. 10.1007/BF02346203
Reference: [3] Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. II. Affine Differentialgeometrie, bearbeitet von K. Reidemeister.Springer, Berlin German (1923),\99999JFM99999 49.0499.01. MR 0015247
Reference: [4] Bol, G.: Projektive Differentialgeometrie. I. Teil.Vandenhoeck & Ruprecht, Göttingen German (1950). Zbl 0035.23401, MR 0034066
Reference: [5] Calugareanu, G., Gheorghiu, G. T.: Sur l'interprétation géométrique des invariants différentiels fondamentaux en géométrie affine et projective des courbes planes.Bull. Math. Soc. Roum. Sci. 43 French (1941), 69-83. Zbl 0060.36603, MR 0012877
Reference: [6] Cartan, E.: Sur un problème du calcul des variations en géométrie projective plane.Moscou, Rec. Math. 34 French (1927), 349-364 \99999JFM99999 53.0486.01.
Reference: [7] Cartan, E.: Lecons sur la théorie des espaces à connexion projective.Cahiers scient. 17, Gauthier-Villars. VI, Paris French (1937). Zbl 0016.07603, MR 0041456
Reference: [8] Chazy, J.: Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes.Acta Math. 34 French (1911), 317-385 \99999JFM99999 42.0340.03. MR 1555070, 10.1007/BF02393131
Reference: [9] Chou, K.-S., Qu, C.: Integrable equations arising from motions of plane curves.Physica D 162 (2002), 9-33. Zbl 0987.35139, MR 1882237, 10.1016/S0167-2789(01)00364-5
Reference: [10] Fubini, G., Čech, E.: Introduction à la géométrie projective différentielle des surfaces.Gauthier-Villars and Cie VI, Paris French (1931). Zbl 0005.31102, MR 1562218
Reference: [11] Griffiths, P. A.: Exterior Differential Systems and the Calculus of Variations.Progress in Mathematics 25, Birkhäuser/Springer, Basel (1983). Zbl 0512.49003, MR 0684663, 10.1007/978-1-4615-8166-6
Reference: [12] Halphen, G. H.: Sur les invariants différentielles.Oeuvre II Gauthier-Villars, Paris French (1918), 197-257 \99999JFM99999 46.1418.01.
Reference: [13] Izumiya, S., Sano, T.: Generic affine differential geometry of plane curves.Proc. Edinb. Math. Soc., II. Ser. 41 (1998), 315-324. Zbl 0965.53013, MR 1626425, 10.1017/S0013091500019672
Reference: [14] Kimpara, M.: Sur les problèmes du calcul des variations en géométrie différentielle projective des courbes gauches.Proc. Phys.-Math. Soc. Japan, III. Ser. 19 French (1937), 977-983. Zbl 0018.08802, 10.11429/ppmsj1919.19.0_977
Reference: [15] Lane, E. P.: A Treatise on Projective Differential Geometry.University of Chicago Press, Chicago (1942). Zbl 0063.03443, MR 0007286
Reference: [16] Beffa, G. Marí: Hamiltonian evolution of curves in classical affine geometries.Physica D 238 (2009), 100-115. Zbl 1163.37023, MR 2571970, 10.1016/j.physd.2008.08.009
Reference: [17] Mihăilescu, T.: Géométrie différentielle affine des courbes planes.Czech. Math. J. 9 French (1959), 265-288. Zbl 0089.17002, MR 0105704
Reference: [18] Mihăilescu, T.: Sobre la variacion del arco afin de las curvas planas.Math. Notae 17 Spanish (1961), 59-81. Zbl 0108.34202, MR 0146691
Reference: [19] Mihăilescu, T.: Geometria diferencial afin general de las curvas alabeadas.Math. Notae 18 Spanish (1963), 23-70. Zbl 0114.37102, MR 0156269
Reference: [20] Monge, G.: Sur les équations différentielles des courbes du second degré.Corresp. sur l'École imp. Polytechnique Klostermann, Paris M. Hachette French (1810), 51-54.
Reference: [21] Musso, E.: Motions of curves in the projective plane inducing the Kaup-Kupershmidt hierarchy.SIGMA, Symmetry Integrability Geom. Methods Appl. 8 (2012), paper 030, 20 pages. Zbl 1246.53012, MR 2942809, 10.3842/SIGMA.2012.030
Reference: [22] Musso, E., Grant, J. D. E.: Coisotropic variational problems.J. Geom. Phys. 50 (2004), 303-338. Zbl 1076.58011, MR 2078230, 10.1016/j.geomphys.2003.10.005
Reference: [23] Musso, E., Nicolodi, L.: Reduction for the projective arclength functional.Forum Math. 17 (2005), 569-590. Zbl 1084.53012, MR 2154420, 10.1515/form.2005.17.4.569
Reference: [24] Nomizu, K., Sasaki, T.: Affine Differential Geometry.Cambridge Tracts in Mathematics 111, Cambridge University Press, Cambridge (1994). Zbl 0834.53002, MR 1311248
Reference: [25] Olver, P. J., Sapiro, G., Tannenbaum, A.: Classification and uniqueness of invariant geometric flows.C. R. Acad. Sci., Paris, Sér. I 319 (1994), 339-344. Zbl 0863.53008, MR 1289308
Reference: [26] Ovsienko, V., Tabachnikov, S.: Projective Differential Geometry Old and New. From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups.Cambridge Tracts in Mathematics 165, Cambridge University Press, Cambridge (2005). Zbl 1073.53001, MR 2177471, 10.1017/CBO9780511543142
Reference: [27] Polyanin, A. D., Zaitsev, V. F.: Handbook of Exact Solutions for Ordinary Differential Equations.CRC Press, Boca Raton (1995). Zbl 0855.34001, MR 1396087, 10.1201/9781420035339
Reference: [28] Sasaki, S.: Contributions to the affine and projective differential geometries of space curves.Jap. J. Math. 13 (1937), 473-481. Zbl 0018.17003, 10.4099/jjm1924.13.0_473
Reference: [29] Sasaki, T.: Projective Differential Geometry and Linear Homogeneous Differential Equations.Rokko Lectures in Mathematics 5, Kobe University (1999).
Reference: [30] Schirokow, P. A., Schirokow, A. P.: Affine Differentialgeometrie.B. G. Teubner, Leipzig German (1962). Zbl 0106.14703, MR 0150666
Reference: [31] Thorbergsson, G., Umehara, M.: Sextactic points on a simple closed curve.Nagoya Math. J. 167 (2002), 55-94. Zbl 1088.53049, MR 1924719, 10.1017/S0027763000025435
Reference: [32] Verpoort, S.: Curvature functionals for curves in the equi-affine plane.Czech. Math. J. 61 (2011), 419-435. Zbl 1249.49028, MR 2905414, 10.1007/s10587-011-0064-4
Reference: [33] Wilczynski, E. J.: Projective Differential Geometry of Curves and Ruled Surfaces.B. G. Teubner, Leipzig German (1906),\99999JFM99999 37.0620.02. MR 0131232, 10.1007/BF01736764
.

Files

Files Size Format View
CzechMathJ_70-2020-1_5.pdf 456.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo