Previous |  Up |  Next

Article

Title: Joint distribution for the Selmer ranks of the congruent number curves (English)
Author: Vrećica, Ilija S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 105-119
Summary lang: English
.
Category: math
.
Summary: We determine the distribution over square-free integers $n$ of the pair $(\dim _{\mathbb {F}_2}{\rm Sel}^\Phi (E_n/\mathbb {Q}),\dim _{\mathbb {F}_2} {\rm Sel}^{\widehat {\Phi }}(E_n'/\mathbb {Q}))$, where $E_n$ is a curve in the congruent number curve family, $E_n'\colon y^2=x^3+4n^2x$ is the image of isogeny $\Phi \colon E_n\rightarrow E_n'$, $\Phi (x,y)=(y^2/x^2,y(n^2-x^2)/x^2)$, and $\widehat {\Phi }$ is the isogeny dual to $\Phi $. (English)
Keyword: elliptic curve
Keyword: congruent number problem
Keyword: Selmer group
MSC: 11G05
MSC: 11N45
MSC: 14H52
idZBL: 07217123
idMR: MR4078348
DOI: 10.21136/CMJ.2019.0171-18
.
Date available: 2020-03-10T10:15:18Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148044
.
Reference: [1] Brent, R. P., McKay, B. D.: Determinants and ranks of random matrices over $\mathbb{Z}_m$.Discrete Math. 66 (1987), 35-49. Zbl 0628.15010, MR 0900928, 10.1016/0012-365X(87)90117-8
Reference: [2] Faulkner, B., James, K.: A graphical approach to computing Selmer groups of congruent number curves.Ramanujan J. 14 (2007), 107-129. Zbl 1197.11065, MR 2299044, 10.1007/s11139-006-9008-2
Reference: [3] Feng, K.: Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture.Acta Arith. 75 (1996), 71-83. Zbl 0838.11039, MR 1379391, 10.4064/aa-75-1-71-83
Reference: [4] Feng, K., Xiong, M.: On elliptic curves $y^2=x^3-n^2x$ with rank zero.J. Number Theory 109 (2004), 1-26. Zbl 1076.11036, MR 2098473, 10.1016/j.jnt.2003.12.015
Reference: [5] Heath-Brown, D. R.: The size of Selmer groups for the congruent number problem.Invent. Math. 111 (1993), 171-195. Zbl 0808.11041, MR 1193603, 10.1007/BF01231285
Reference: [6] Heath-Brown, D. R.: The size of Selmer groups for the congruent number problem II.Invent. Math. 118 (1994), 331-370. Zbl 0815.11032, MR 1292115, 10.1007/BF01231536
Reference: [7] Kane, D., Klagsbrun, Z.: On the joint distribution of $ Sel_\Phi (E/\mathbb{Q})$ and $ Sel_{\widehat{\Phi}}(E'/\mathbb{Q})$ in quadratic twist families.Available at https://arxiv.org/abs/1702.02687v1 (2007), 25 pages.
Reference: [8] Koblitz, N.: Introduction to Elliptic Curves and Modular Forms.Graduate Texts in Mathematics 97, Springer, New York (1984). Zbl 0553.10019, MR 0766911, 10.1007/978-1-4612-0909-6
Reference: [9] Rhoades, R. C.: $2$-Selmer groups and the Birch-Swinnerton-Dyer conjecture for the congruent number curves.J. Number Theory 129 (2009), 1379-1391. Zbl 1245.11078, MR 2521480, 10.1016/j.jnt.2009.01.015
Reference: [10] Xiong, M., Zaharescu, A.: Selmer groups and Tate-Shafarevich groups for the congruent number problem.Comment. Math. Helv. 84 (2009), 21-56. Zbl 1180.11017, MR 2466074, 10.4171/CMH/151
.

Files

Files Size Format View
CzechMathJ_70-2020-1_6.pdf 313.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo