Title:
|
Joint distribution for the Selmer ranks of the congruent number curves (English) |
Author:
|
Vrećica, Ilija S. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
70 |
Issue:
|
1 |
Year:
|
2020 |
Pages:
|
105-119 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We determine the distribution over square-free integers $n$ of the pair $(\dim _{\mathbb {F}_2}{\rm Sel}^\Phi (E_n/\mathbb {Q}),\dim _{\mathbb {F}_2} {\rm Sel}^{\widehat {\Phi }}(E_n'/\mathbb {Q}))$, where $E_n$ is a curve in the congruent number curve family, $E_n'\colon y^2=x^3+4n^2x$ is the image of isogeny $\Phi \colon E_n\rightarrow E_n'$, $\Phi (x,y)=(y^2/x^2,y(n^2-x^2)/x^2)$, and $\widehat {\Phi }$ is the isogeny dual to $\Phi $. (English) |
Keyword:
|
elliptic curve |
Keyword:
|
congruent number problem |
Keyword:
|
Selmer group |
MSC:
|
11G05 |
MSC:
|
11N45 |
MSC:
|
14H52 |
idZBL:
|
07217123 |
idMR:
|
MR4078348 |
DOI:
|
10.21136/CMJ.2019.0171-18 |
. |
Date available:
|
2020-03-10T10:15:18Z |
Last updated:
|
2022-04-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148044 |
. |
Reference:
|
[1] Brent, R. P., McKay, B. D.: Determinants and ranks of random matrices over $\mathbb{Z}_m$.Discrete Math. 66 (1987), 35-49. Zbl 0628.15010, MR 0900928, 10.1016/0012-365X(87)90117-8 |
Reference:
|
[2] Faulkner, B., James, K.: A graphical approach to computing Selmer groups of congruent number curves.Ramanujan J. 14 (2007), 107-129. Zbl 1197.11065, MR 2299044, 10.1007/s11139-006-9008-2 |
Reference:
|
[3] Feng, K.: Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture.Acta Arith. 75 (1996), 71-83. Zbl 0838.11039, MR 1379391, 10.4064/aa-75-1-71-83 |
Reference:
|
[4] Feng, K., Xiong, M.: On elliptic curves $y^2=x^3-n^2x$ with rank zero.J. Number Theory 109 (2004), 1-26. Zbl 1076.11036, MR 2098473, 10.1016/j.jnt.2003.12.015 |
Reference:
|
[5] Heath-Brown, D. R.: The size of Selmer groups for the congruent number problem.Invent. Math. 111 (1993), 171-195. Zbl 0808.11041, MR 1193603, 10.1007/BF01231285 |
Reference:
|
[6] Heath-Brown, D. R.: The size of Selmer groups for the congruent number problem II.Invent. Math. 118 (1994), 331-370. Zbl 0815.11032, MR 1292115, 10.1007/BF01231536 |
Reference:
|
[7] Kane, D., Klagsbrun, Z.: On the joint distribution of $ Sel_\Phi (E/\mathbb{Q})$ and $ Sel_{\widehat{\Phi}}(E'/\mathbb{Q})$ in quadratic twist families.Available at https://arxiv.org/abs/1702.02687v1 (2007), 25 pages. |
Reference:
|
[8] Koblitz, N.: Introduction to Elliptic Curves and Modular Forms.Graduate Texts in Mathematics 97, Springer, New York (1984). Zbl 0553.10019, MR 0766911, 10.1007/978-1-4612-0909-6 |
Reference:
|
[9] Rhoades, R. C.: $2$-Selmer groups and the Birch-Swinnerton-Dyer conjecture for the congruent number curves.J. Number Theory 129 (2009), 1379-1391. Zbl 1245.11078, MR 2521480, 10.1016/j.jnt.2009.01.015 |
Reference:
|
[10] Xiong, M., Zaharescu, A.: Selmer groups and Tate-Shafarevich groups for the congruent number problem.Comment. Math. Helv. 84 (2009), 21-56. Zbl 1180.11017, MR 2466074, 10.4171/CMH/151 |
. |