Previous |  Up |  Next

Article

Title: Pseudometrics on Ext-semigroups (English)
Author: Wei, Changguo
Author: Zhao, Xiangmei
Author: Liu, Shudong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 2
Year: 2020
Pages: 435-451
Summary lang: English
.
Category: math
.
Summary: This paper considers certain pseudometric structures on Ext-semigroups and gives a unified characterization of several topologies on Ext-semigroups. It is demonstrated that these Ext-semigroups are complete topological semigroups. To this end, it is proved that a metric induces a pseudometric on a quotient space with respect to an equivalence relation if it has certain invariance. We give some properties of this pseudometric space and prove that the topology induced by the pseudometric coincides with the one induced by the quotient map. (English)
Keyword: pseudometric
Keyword: topological group
Keyword: extension
Keyword: Ext-group
MSC: 22A05
MSC: 46L05
idZBL: 07217144
idMR: MR4111852
DOI: 10.21136/CMJ.2019.0352-18
.
Date available: 2020-06-17T12:34:02Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148238
.
Reference: [1] Arveson, W.: Notes on extensions of $C^*$-algebras.Duke Math. J. 44 (1977), 329-355. Zbl 0368.46052, MR 0438137, 10.1215/S0012-7094-77-04414-3
Reference: [2] Blackadar, B.: $K$-Theory for Operator Algebras.Mathematical Sciences Research Institute Publications 5, Cambridge University Press, Cambridge (1998). Zbl 0913.46054, MR 1656031
Reference: [3] Brown, L. G.: The universal coefficient theorem for Ext and quasidiagonality.Operator Algebras and Group Representations, Vol. I Monographs and Studies in Mathematics 17, Pitman, Boston (1984), 60-64. Zbl 0548.46055, MR 0731763
Reference: [4] Brown, L. G., Douglas, R. G., Fillmore, P. A.: Extensions of $C^*$-algebras, operators with compact self-commutators, and $K$-homology.Bull. Am. Math. Soc. 79 (1973), 973-978. Zbl 0277.46052, MR 0346540, 10.1090/S0002-9904-1973-13284-7
Reference: [5] Brown, L. G., Douglas, R. G., Fillmore, P. A.: Extensions of $C^*$-algebras and $K$-homology.Ann. Math. (2) 105 (1977), 265-324. Zbl 0376.46036, MR 0458196, 10.2307/1970999
Reference: [6] Dadarlat, M.: On the topology of the Kasparov groups and its applications.J. Func. Anal. 228 (2005), 394-418. Zbl 1088.46042, MR 2175412, 10.1016/j.jfa.2005.02.015
Reference: [7] Elliott, G. A., Kucerovsky, D.: An abstract Voiculescu-Brown-Douglas-Fillmore absorption theorem.Pac. J. Math. 198 (2001), 385-409. Zbl 1058.46041, MR 1835515, 10.2140/pjm.2001.198.385
Reference: [8] Kucerovsky, D., Ng, P. W.: The corona factorization property and approximate unitary equivalence.Houston J. Math. 32 (2006), 531-550. Zbl 1111.46050, MR 2219330
Reference: [9] Rosenberg, J., Schochet, C.: The Künneth theorem and the universal coefficient theorem for Kasparov's generalized $K$-functor.Duke Math. J. 55 (1987), 431-474. Zbl 0644.46051, MR 0894590, 10.1215/S0012-7094-87-05524-4
Reference: [10] Salinas, N.: Homotopy invariance of $ Ext(\mathcal A)$.Duke Math. J. 44 (1977), 777-794. Zbl 0391.46057, MR 0512388, 10.1215/S0012-7094-77-04435-0
Reference: [11] Salinas, N.: Quasitriangular extensions of $C^*$-algebras and problems on joint quasitriangularity of operators.J. Oper. Theory 10 (1983), 167-205. Zbl 0539.47011, MR 0715566
Reference: [12] Salinas, N.: Relative quasidiagonality and $KK$-theory.Houston J. Math. 18 (1992), 97-116. Zbl 0772.46039, MR 1159442
Reference: [13] Schochet, C. L.: The fine structure of the Kasparov groups I: Continuity of the $KK$-pairing.J. Func. Anal. 186 (2001), 25-61. Zbl 0990.19003, MR 1863291, 10.1006/jfan.2001.3784
Reference: [14] Schochet, C. L.: The fine structure of the Kasparov groups II: Topologizing the UCT.J. Func. Anal. 194 (2002), 263-287. Zbl 1029.19004, MR 1934604, 10.1006/jfan.2002.3949
Reference: [15] Schochet, C. L.: The fine structure of the Kasparov groups III: Relative quasidiagonality.J. Oper. Theory 53 (2005), 91-117. Zbl 1119.19006, MR 2132689
Reference: [16] Wei, C.: Universal coefficient theorems for the stable Ext-groups.J. Funct. Anal. 258 (2010), 650-664. Zbl 1194.46103, MR 2557950, 10.1016/j.jfa.2009.10.009
Reference: [17] Wei, C.: Classification of extensions of A$\mathbb T$-algebras.Int. J. Math. 22 (2011), 1187-1208. Zbl 1232.46059, MR 2826560, 10.1142/S0129167X11007227
Reference: [18] Wei, C.: On the classification of certain unital extensions of $C^*$-algebras.Houston J. Math. 41 (2015), 965-991. Zbl 1344.46050, MR 3423693
Reference: [19] Wei, C., Liu, S.: On the structure of multiplier algebras.Rocky Mt. J. Math. 47 (2017), 997-1012. Zbl 1380.46042, MR 3682159, 10.1216/RMJ-2017-47-3-997
Reference: [20] Wei, C., Wang, L.: Hereditary $ C^*$-subalgebras and comparison of positive elements.Sci. China, Math. 53 (2010), 1565-1570. Zbl 1200.46050, MR 2658613, 10.1007/s11425-010-4011-x
Reference: [21] Wei, C., Wang, L.: Isomorphism of extensions of $C({\mathbb T}^2)$.Sci. China, Math. 54 (2011), 281-286. Zbl 1225.46051, MR 2771204, 10.1007/s11425-010-4132-2
Reference: [22] Xing, R., Wei, C., Liu, S.: Quotient semigroups and extension semigroups.Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 339-350. Zbl 1264.46052, MR 2972657, 10.1007/s12044-012-0086-3
.

Files

Files Size Format View
CzechMathJ_70-2020-2_9.pdf 337.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo