Previous |  Up |  Next

Article

Keywords:
continuous state feedback; control stochastic nonlinear systems; global asymptotic stability in probability
Summary:
We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods are inapplicable to a lot of systems contained in the class of stochastic systems considered in this paper.
References:
[1] Abedi, F., Leong, W. J., Chaharborj, S. S.: On the asymptotical and practical stability of stochastic control systems. Math. Problems Engrg. (2013), 1-10. DOI 10.1155/2013/560647 | MR 3035628
[2] Artstein, Z.: Stabilization with relaxed control. Nonlinear Anal. Theory Methods Appl. 7 (1983), 1163-1173. DOI 10.1016/0362-546x(83)90049-4 | MR 0721403
[3] Chabour, R., Oumoun, M.: On a universal formula for the stabilization of control stochastic nonlinear systems. Stochast. Anal. Appl. 17 (1999), 359-368. DOI 10.1080/07362999908809606 | MR 1686995
[4] Daumail, L., Florchinger, P.: A constructive extension of Artsteins's theorem to the stochastic context. Stochast. Dynamics 2 (2002), 251-263. DOI 10.1142/s0219493702000418 | MR 1912143
[5] Deng, H., Krstic, M., Williams, R. J.: Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Trans. Automat. Control 46 (2001), 1237-1253. DOI 10.1109/9.940927 | MR 1847327
[6] Florchinger, P.: A universal formula for the stabilization of control stochastic differential equations. Stochast. Anal. Appl. 11 (1993), 155-162. DOI 10.1080/07362999308809308 | MR 1214577
[7] Florchinger, P.: A universal design of Freeman's formula for the stabilization of stochastic systems. Stochast. Anal. Appl. 34 (2016), 137-146. DOI 10.1080/07362994.2015.1108203 | MR 3437083
[8] Florchinger, P.: Stabilization of nonlinear stochastic systems without unforced dynamics via time-varying feedback. Kybernetika 54 (2018), 321-335. DOI 10.14736/kyb-2018-2-0321 | MR 3807718
[9] Fontbona, J., Raminez, H., Riquelme, V., Silva, F.: Stochastic modeling and control of bioreactors. IFACPapersOnLine 50 (2017), 12611-12616. DOI 10.1016/j.ifacol.2017.08.2203
[10] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. Amsterdam, North-Holland 1981. DOI 10.1002/bimj.4710280425 | MR 0637061
[11] Gao, F., Wu, Y., Yu, X.: Global state feedback stabilization of stochastic high-order nonlinear systems with high-order and low-order nonlinearities. Int. J. Systems Sci. 47 (2016), 16, 3846-3856. DOI 10.1080/00207721.2015.1129678 | MR 3512588
[12] Khalil, H. K.: Nonlinear Systems. Upper Saddle River, Prentice-Hall, NJ 2002. Zbl 1194.93083
[13] Khasminskii, R. Z.: Stochastic Stability of Differential Equations. Sijthoff and Noordhoff International Publishers 1980. DOI 10.1007/978-3-642-23280-0 | MR 0600653 | Zbl 1241.60002
[14] Klebaner, F. C.: Introduction to Stochastic Calculus with Applications. Imperial College Press, London 2005. DOI 10.1142/p386 | MR 2160228
[15] Kushner, H. J.: Stochastic Stability and Control. Academic Press, New York 1967. DOI 10.1002/zamm.19680480428 | MR 0216894
[16] Lan, Q., Li, S.: Global output-feedback stabilization for a class of stochastic nonlinear systems via sampled-data control. Int. J. Robust Nonlinear Control 27 (2017), 3643-3658. DOI 10.1002/rnc.3758 | MR 3733629
[17] Lan, Q., Niu, H., Liu, Y., Xu, H.: Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems. Kybernetika 53 (2017), 780-802. DOI 10.14736/kyb-2017-5-0780 | MR 3750103
[18] Lewis, A. L.: Option Valuation Under Stochastic Volatility II. Finance Press, Newport Beach 2009. DOI 10.1111/rssa.12262 | MR 3526206
[19] Li, F., Liu, Y.: Global stability and stabilization of more general stochastic nonlinear systems. J. Math. Anal. Appl. 413 (2014), 841-855. DOI 10.1016/j.jmaa.2013.12.021 | MR 3159808
[20] Lin, Y., Sontag, E. D.: A universal formula for stabilization with bounded controls. Systems Control Lett. 16 (1991), 393-397. DOI 10.1016/0167-6911(91)90111-q | MR 1112756
[21] Maniar, L., Oumoun, M., Vivalda, J. C.: On the stabilization of quadratic nonlinear systems. Europ. J Control 35 (2017), 28-33. DOI 10.1016/j.ejcon.2017.03.001 | MR 3648351
[22] Mao, X. R.: Stochastic Differential Equations and Their Applications. Horwood Publishing, Chichester 1997. MR 1475218 | Zbl 0892.60057
[23] Mao, X., Truman, A., Yuan, C.: Euler-Maruyama approximations in mean-reverting stochastic volatility model under regime-switching. J. Appl. Math. Stochast. Anal. (2006), 1-20. DOI 10.1155/jamsa/2006/80967 | MR 2237177
[24] Ondreját, M., Seidler, J.: A note on weak solutions to stochastic differential equations. Kybernetika 54 (2018), 888-907. DOI 10.14736/kyb-2018-5-0888 | MR 3893126
[25] Sontag, E. D.: A universal construction of Artstein's theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), 117-123. DOI 10.1016/0167-6911(89)90028-5 | MR 1014237
[26] Yang, H., Kloeden, P. E., Wu, F.: Weak solution of stochastic differential equations with fractional diffusion coefficient. Stochast. Anal. Appl. 36 (2018), 4, 613-621. DOI 10.1080/07362994.2018.1434005 | MR 3854532
[27] Zha, W., Zhai, J., Fei, S.: Global adaptive control for a class of uncertain stochastic nonlinear systems with unknown output gain. Int. J. Control Automat. Systems 15 (2017), 3, 1125-1133. DOI 10.1007/s12555-016-0023-9 | MR 3418397
[28] Zhang, B. L., Han, Q. L., Zhang, X. M.: Recent advances in vibration control of offshore platforms. Nonlinear Dynamics 89 (2017), 755-771. DOI 10.1007/s11071-017-3503-4
[29] Zhang, B. L., Han, Q. L., Zhang, X. M.: Event-triggered $H_\infty$ reliable control for offshore structures in network environments. J. Sound Vibration 368 (2016), 1-21. DOI 10.1016/j.jsv.2016.01.008
[30] Zhang, B. L., Han, Q. L., Zhang, X. M., Yu, X.: Sliding mode control with mixed current and delayed states for offshore steel jacket platforms. IEEE Trans. Control Systems Technol. 22 (2014), 1769-1783. DOI 10.1109/tcst.2013.2293401
[31] Zhang, J., Liu, Y.: Continuous output-feedback stabilization for a class of stochastic high-order nonlinear systems. J. Control Theory Appl. 11 (2013), 343-350. DOI 10.1007/s11768-013-2166-z | MR 3083980
[32] Zhang, X., Xie, X.: Global state feedback stabilization of nonlinear systems with high-order and low-order nonlinearities. Int. J. Control 87 (2014), 642-652. DOI 10.1080/00207179.2013.852252 | MR 3172535
Partner of
EuDML logo