Previous |  Up |  Next

Article

Title: Formal deformations and principal series representations of ${\rm SL}(2,{\mathbb R})$ and ${\rm SL}(2,{\mathbb C})$ (English)
Author: Cahen, Benjamin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 935-951
Summary lang: English
.
Category: math
.
Summary: In this note, we study formal deformations of derived representations of the principal series representations of ${\rm SL}(2,{\mathbb R})$. In particular, we recover all the representations of the derived principal series by deforming one of them. Similar results are also obtained for ${\rm SL}(2,{\mathbb C})$. (English)
Keyword: deformation of representation
Keyword: Lie algebra
Keyword: Chevalley-Eilenberg cohomology
Keyword: Moyal star product
Keyword: Weyl correspondence
Keyword: minimal realization
MSC: 17B10
MSC: 17B20
MSC: 17B56
MSC: 22E46
MSC: 53D55
idZBL: 07285971
idMR: MR4181788
DOI: 10.21136/CMJ.2020.0053-19
.
Date available: 2020-11-18T09:42:13Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148403
.
Reference: [1] Arnal, D., Benamor, H., Cahen, B.: Minimal realizations of classical simple Lie algebras through deformations.Ann. Fac. Sci. Toulouse, VI. Sér., Math. 7 (1998), 169-184. Zbl 0923.17010, MR 1656166, 10.5802/afst.894
Reference: [2] Cahen, B.: Construction par déformation de réalisations minimales d'une algèbre de Lie simple de type $G_2$.C. R. Acad. Sci., Paris, Sér. I 323 (1996), 853-857 French corrigendum ibid. 355 485 2017. Zbl 0864.17010, MR 1414547
Reference: [3] Cahen, B.: Deformation program for principal series representations.Lett. Math. Phys. 36 (1996), 65-75. Zbl 0843.22020, MR 1371298, 10.1007/BF00403252
Reference: [4] Cahen, B.: Déformations formelles de certaines représentations de l'algèbre de Lie d'un groupe de Poincaré généralisé.Ann. Math. Blaise Pascal 8 (2001), 17-37 French. Zbl 0987.22008, MR 1863645, 10.5802/ambp.133
Reference: [5] Cahen, B.: Weyl quantization for semidirect products.Differ. Geom. Appl. 25 (2007), 177-190. Zbl 1117.81087, MR 2311733, 10.1016/j.difgeo.2006.08.005
Reference: [6] Cahen, B.: Berezin quantization and holomorphic representations.Rend. Semin. Mat. Univ. Padova 129 (2013), 277-297. Zbl 1272.22007, MR 3090642, 10.4171/RSMUP/129-16
Reference: [7] Cahen, B.: A construction by deformation of unitary irreducible representations of $SU(1,n)$ and $SU(n+1)$.J. Algebra Appl. 18 (2019), Article ID 1950125, 15 pages. Zbl 07096440, MR 3977786, 10.1142/S0219498819501251
Reference: [8] Combescure, M., Robert, D.: Coherent States and Applications in Mathematical Physics.Theoretical and Mathematical Physics. Springer, Berlin (2012). Zbl 1243.81004, MR 2952171, 10.1007/978-94-007-0196-0
Reference: [9] Fialowski, A.: Deformations in mathematics and physics.Int. J. Theor. Phys. 47 (2008), 333-337. Zbl 1140.81416, MR 2396768, 10.1007/s10773-007-9454-7
Reference: [10] Fialowski, A., Montigny, M. de: Deformations and contractions of Lie algebras.J. Phys. A, Math. Gen. 38 (2005), 6335-6349. Zbl 1073.22012, MR 2166626, 10.1088/0305-4470/38/28/006
Reference: [11] Fialowski, A., Penkava, M.: The moduli space of 4-dimensional nilpotent complex associative algebras.Linear Algebra Appl. 457 (2014), 408-427. Zbl 1294.14008, MR 3230454, 10.1016/j.laa.2014.05.014
Reference: [12] Folland, G. B.: Harmonic Analysis in Phase Space.Annals of Mathematics Studies 122. Princeton University Press, Princeton (1989). Zbl 0682.43001, MR 0983366, 10.1515/9781400882427
Reference: [13] Gerstenhaber, M.: On the deformation of rings and algebras.Ann. Math. 79 (1964), 59-103. Zbl 0123.03101, MR 0171807, 10.2307/1970484
Reference: [14] Guichardet, A.: Cohomologie des Groupes Topologiques et des Algèbres de Lie.Textes Mathématiques 2. Cedic, Paris (1980), French. Zbl 0464.22001, MR 0644979
Reference: [15] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces.Graduate Studies in Mathematics 34. American Mathematical Society, Providence (2001). Zbl 0993.53002, MR 1834454, 10.1090/gsm/034
Reference: [16] Hermann, R.: Analytic continuation of group representations. IV.Commun. Math. Phys. 5 (1967), 131-156. Zbl 0144.46105, MR 0231948, 10.1007/BF01646842
Reference: [17] Hörmander, L.: The Analysis of Linear Partial Differential Operators. III.Grundlehren der Mathematischen Wissenschaften 274. Springer, Berlin (1985). Zbl 0601.35001, MR 0781536, 10.1007/978-3-540-49938-1
Reference: [18] Joseph, A.: Minimal realizations and spectrum generating algebras.Commun. Math. Phys. 36 (1974), 325-338. Zbl 0285.17007, MR 0342049, 10.1007/BF01646204
Reference: [19] Kirillov, A. A.: Lectures on the Orbit Method.Graduate Studies in Mathematics 64. American Mathematical Society, Providence (2004). Zbl 1229.22003, MR 2069175, 10.1090/gsm/064
Reference: [20] Knapp, A. W.: Representation Theory of Semisimple Groups: An Overview Based on Examples.Princeton Mathematical Series 36. Princeton University Press, Princeton (1986). Zbl 0604.22001, MR 0855239, 10.1515/9781400883974
Reference: [21] Lesimple, M., Pinczon, G.: Deformations of Lie group and Lie algebra representations.J. Math. Phys. 34 (1993), 4251-4272. Zbl 0798.22009, MR 1233270, 10.1063/1.529998
Reference: [22] Levy-Nahas, M.: Deformation and contraction of Lie algebras.J. Math. Phys. 8 (1967), 1211-1222. Zbl 0175.24803, MR 0224747, 10.1063/1.1705338
Reference: [23] Levy-Nahas, M., Seneor, R.: First order deformations of Lie algebras representations, $E(3)$ and Poincaré examples.Commun. Math. Phys. 9 (1968), 242-266. Zbl 0161.46003, MR 0235804, 10.1007/BF01645689
Reference: [24] A. Nijenhuis, R. W. Richardson, Jr.: Cohomology and deformations in graded Lie algebras.Bull. Am. Math. Soc. 72 (1966), 1-29. Zbl 0136.30502, MR 0195995, 10.1090/S0002-9904-1966-11401-5
Reference: [25] A. Nijenhuis, R. W. Richardson, Jr.: Deformations of homomorphisms of Lie groups and Lie algebras.Bull. Am. Math. Soc. 73 (1967), 175-179. Zbl 0153.04402, MR 0204575, 10.1090/S0002-9904-1967-11703-8
Reference: [26] A. Nijenhuis, R. W. Richardson, Jr.: Deformations of Lie algebras structures.J. Math. Mech. 17 (1967), 89-105. Zbl 0166.30202, MR 0214636, 10.1512/iumj.1968.17.17005
Reference: [27] Voros, A.: An algebra of pseudo differential operators and the asymptotics of quantum mechanics.J. Funct. Anal. 29 (1978), 104-132. Zbl 0386.47031, MR 0496088, 10.1016/0022-1236(78)90049-6
Reference: [28] Wallach, N. R.: Harmonic Analysis on Homogeneous Spaces.Pure and Applied Mathematics 19. Marcel Dekker, New York (1973). Zbl 0265.22022, MR 0498996
.

Files

Files Size Format View
CzechMathJ_70-2020-4_3.pdf 352.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo