Previous |  Up |  Next

Article

Title: Spectral sequences for commutative Lie algebras (English)
Author: Wagemann, Friedrich
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 28
Issue: 2
Year: 2020
Pages: 123-137
Summary lang: English
.
Category: math
.
Summary: We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic $2$. In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequences which compare Chevalley-Eilenberg-, commutative- and Leibniz cohomology. These methods are illustrated by a few computations. (English)
Keyword: Leibniz cohomology
Keyword: Chevalley-Eilenberg cohomology
Keyword: spectral sequence
Keyword: commutative Lie algebra
Keyword: commutative cohomology
MSC: 17A30
MSC: 17A32
MSC: 17B50
MSC: 17B55
MSC: 17B56
idZBL: Zbl 07300185
idMR: MR4162925
.
Date available: 2021-03-03T08:42:53Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148698
.
Reference: [1] Bouarroudj, S., Grozman, P., Leites, D.: Classification of finite dimensional modular lie superalgebras with indecomposable Cartan matrix.SIGMA. Symmetry, Integrability and Geometry Mathods Applications, 5, 2009, 1-63, MR 2529187
Reference: [2] Feldvoss, J., Wagemann, F.: On Leibniz cohomology.arXiv:1902.06128, 2019, 1-30, MR 4187237
Reference: [3] Hochschild, G., Serre, J.-P.: Cohomology of Lie algebras.Annals of Mathematics, 1953, 591-603, JSTOR, Zbl 0053.01402, MR 0054581, 10.2307/1969740
Reference: [4] Loday, J.-L.: Une version non commutative des algèbres de Leibniz.L'Enseignement Mathématique, 39, 2, 1993, 269-293, MR 1252069
Reference: [5] Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology.Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag, MR 1213376, 10.1007/BF01445099
Reference: [6] Lopatkin, V., Zusmanovich, P.: Commutative Lie algebras and commutative cohomology in characteristic $2$.Communications in Contemporary Mathematics, 2020, 1-14, DOI:10.1142/S0219199720500467. 10.1142/S0219199720500467
Reference: [7] Pirashvili, T.: On Leibniz homology.Annales de l'institut Fourier, 44, 2, 1994, 401-411, MR 1296737, 10.5802/aif.1403
Reference: [8] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. I. Structure theory. Second edition.1, 2017, De Gruyter Expositions in Mathematics, MR 3642321
Reference: [9] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. II. Classifying the absolute toral rank two case. Second edition.42, 2017, De Gruyter Expositions in Mathematics, MR 3642323
Reference: [10] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. III. Completion of the classification.42, 2017, De Gruyter Expositions in Mathematics, MR 3642323
Reference: [11] Weisfeiler, B.Yu., Kac, V.G.: Exponentials in Lie algebras of characteristic $p$.Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 35, 4, 1971, 762-788, Russian Academy of Sciences, Steklov Mathematical Institute of Russian Academy of Sciences, MR 0306282
.

Files

Files Size Format View
ActaOstrav_28-2020-2_3.pdf 388.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo