Previous |  Up |  Next

Article

Title: Leibniz $A$-algebras (English)
Author: Towers, David A.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 28
Issue: 2
Year: 2020
Pages: 103-121
Summary lang: English
.
Category: math
.
Summary: A finite-dimensional Lie algebra is called an $A$-algebra if all of its nilpotent subalgebras are abelian. These arise in the study of constant Yang-Mills potentials and have also been particularly important in relation to the problem of describing residually finite varieties. They have been studied by several authors, including Bakhturin, Dallmer, Drensky, Sheina, Premet, Semenov, Towers and Varea. In this paper we establish generalisations of many of these results to Leibniz algebras. (English)
Keyword: Lie algebras
Keyword: Leibniz algebras
Keyword: $A$-algebras
Keyword: Frattini ideal
Keyword: solvable
Keyword: nilpotent
Keyword: completely solvable
Keyword: metabelian
Keyword: monolithic
Keyword: cyclic Leibniz algebras
MSC: 17A32
MSC: 17B05
MSC: 17B20
MSC: 17B30
MSC: 17B50
idZBL: Zbl 07300184
idMR: MR4162924
.
Date available: 2021-03-03T08:34:31Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148687
.
Reference: [1] Bakhturin, Yu.A., Semenov, K.N.: On the finite approximability of solvable varieties of Lie algebras.Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 6, 1986, 59-61, Lomonosov Moscow State University, English transl. in Moscow University Mathematics Bulletin 41 (1986), 49-51. MR 0872075
Reference: [2] Barnes, D.W.: Some theorems on Leibniz algebras.Communications in Algebra, 39, 7, 2011, 2463-2472, Zbl 1268.17001, MR 2821724, 10.1080/00927872.2010.489529
Reference: [3] Bloh, A.: On a generalization of Lie algebra notion.USSR Doklady, 165, 3, 1965, 471-473, MR 0193114
Reference: [4] Dallmer, E.: On Lie algebras all nilpotent subalgebras of which are Abelian.Journal of Mathematical Physics, 40, 8, 1999, 4151-4156, American Institute of Physics, MR 1702410
Reference: [5] Drenski, V.S.: Solvable Lie $A$-algebras.Serdica, 9, 1983, 132-135, MR 0731837
Reference: [6] Jacobson, N.: Lie Algebras.1962, Interscience Publishers, New York-London, Interscience Tracts on Pure and Applied Mathematics, no. 10. Zbl 0121.27504, MR 0143793
Reference: [7] Loday, J.L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz.L'Enseignement Mathématique, 39, 3-4, 1993, 269-293, MR 1252069
Reference: [8] Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology.Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag, MR 1213376, 10.1007/BF01445099
Reference: [9] Premet, A.A.: Inner ideals in modular Lie algebras.Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk, 5, 1986, 11-15, MR 0876665
Reference: [10] Premet, A.A.: Lie algebras without strong degeneration.Mathematics of the USSR - Sbornik, 57, 1, 1987, 151-164, IOP Publishing, MR 0830100, 10.1070/SM1987v057n01ABEH003060
Reference: [11] Premet, A.A., Semenov, K.N.: Varieties of residually finite Lie algebras.Mathematics of the USSR - Sbornik, 65, 1, 1990, 109-118, IOP Publishing, MR 0965882, 10.1070/SM1990v065n01ABEH001142
Reference: [12] Ray, C.B., Bosko-Dunbar, L., Hedges, A., Hird, J.T., Stagg, K., Stitzinger, E.: A Frattini theory for Leibniz algebras.Communications in Algebra, 41, 4, 2013, 1547-1557, Taylor & Francis, MR 3044424, 10.1080/00927872.2011.643844
Reference: [13] Ray, C.B., Combs, A., Gin, N., Hedges, A., Hird, J.T., Zack, L.: Nilpotent Lie and Leibniz algebras.Communications in Algebra, 42, 6, 2014, 2404-2410, Taylor & Francis, MR 3169714, 10.1080/00927872.2012.717655
Reference: [14] Schafer, R.D.: An introduction to nonassociative algebras (Pure & Applied Mathematics).1966, Academic Press, New York, MR 0210757
Reference: [15] Semenov, K.N.: Conditions for a variety and a quasivariety generated by a finite Lie algebra to coincide (Russian. English, Russian summaries), Abelian Groups and modules.Abelian Groups and modules, Tomsk. Gos. Univ. Tomsk, 10, 1991, 134-138, MR 1197373
Reference: [16] Sheina, G.V.: Varieties of metabelian Lie $A$-algebras. I.Vestnik Moskov. Univ. Ser. I Mat. Mekh., 4, 1977, 37-46, English transl. in Moscow University Mathematics Bulletin 32 (1977), 28-35.. MR 0486027
Reference: [17] Sheina, G.V.: Varieties of metabelian Lie $A$-algebras. II.Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3, 1978, 52-59, English transl. in Moscow University Mathematics Bulletin 33 (1978), 48-54.. MR 0486028
Reference: [18] Sheina, G.V.: Metabelian varieties Lie $A$-algebras. Russian.Uspekhi Matematicheskikh Nauk, 33, 1978, 209-210, MR 0486029
Reference: [19] Towers, D.A.: A Frattini theory for algebras.Proceedings of the London Mathematical Society, 3, 3, 1973, 440-462, Narnia, MR 0427393, 10.1112/plms/s3-27.3.440
Reference: [20] Towers, D.A.: Solvable Lie $A$-algebras.Journal of Algebra, 340, 1, 2011, 1-12, Elsevier, MR 2813558, 10.1016/j.jalgebra.2011.06.003
Reference: [21] Towers, D.A., Varea, V.R.: Elementary Lie algebras and Lie $A$-algebras.Journal of Algebra, 312, 2, 2007, 891-901, Elsevier, MR 2333190, 10.1016/j.jalgebra.2006.11.034
Reference: [22] Towers, D.A., Varea, V.R.: Further results on elementary Lie algebras and Lie $A$-algebras.Communications in Algebra, 41, 4, 2013, 1432-1441, Taylor & Francis, MR 3044418, 10.1080/00927872.2011.643667
Reference: [23] Winter, D.J.: Abstract Lie Algebras.1972, M.I.T. Press, Cambridge, Mass., MR 0332905
.

Files

Files Size Format View
ActaOstrav_28-2020-2_2.pdf 413.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo