Previous |  Up |  Next

Article

Title: Reductive homogeneous spaces and nonassociative algebras (English)
Author: Elduque, Alberto
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 28
Issue: 2
Year: 2020
Pages: 199-229
Summary lang: English
.
Category: math
.
Summary: The purpose of these survey notes is to give a presentation of a classical theorem of Nomizu \cite {Nom54} that relates the invariant affine connections on reductive homogeneous spaces and nonassociative algebras. (English)
Keyword: Reductive homogeneous space
Keyword: invariant affine connection
Keyword: Lie-Yamaguti algebra
MSC: 17A99
MSC: 17B60
MSC: 22F30
MSC: 53B05
MSC: 53C30
idZBL: Zbl 07300190
idMR: MR4162930
.
Date available: 2021-03-03T08:51:46Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148703
.
Reference: [1] Alekseevskiĭ, D.V., Gamkrelidze, R.V., Lychagin, V.V., Vinogradov, A.M.: Geometry I: Basic ideas and concepts of differential geometry.1, 1991, Springer, Berlin, Encyclopaedia Math. Sci. 28. MR 1300019
Reference: [2] Benito, P., Draper, C., Elduque, A.: On some algebras related to simple Lie triple systems.Journal of Algebra, 219, 1, 1999, 234-254, Elsevier, MR 1707670, 10.1006/jabr.1999.7877
Reference: [3] Benito, P., Draper, C., Elduque, A.: Lie-Yamaguti algebras related to $\mathfrak {g}_{2}$.Journal of Pure and Applied Algebra, 202, 1--3, 2005, 22-54, Elsevier, MR 2163399, 10.1016/j.jpaa.2005.01.003
Reference: [4] Benito, P., Elduque, A., Martín-Herce, F.: Irreducible Lie-Yamaguti algebras.Journal of Pure and Applied Algebra, 213, 5, 2009, 795-808, Elsevier, MR 2494372, 10.1016/j.jpaa.2008.09.003
Reference: [5] Benito, P., Elduque, A., Martín-Herce, F.: Irreducible Lie-Yamaguti algebras of generic type.Journal of Pure and Applied Algebra, 215, 2, 2011, 108-130, Elsevier, MR 2720677, 10.1016/j.jpaa.2010.04.003
Reference: [6] Burde, D.: Left-symmetric algebras, or pre-Lie algebras in geometry and physics.Central European Journal of Mathematics, 4, 3, 2006, 323-357, Springer, MR 2233854, 10.2478/s11533-006-0014-9
Reference: [7] Conlon, L.: Differentiable manifolds, Second edition.2001, Birkhäuser, Boston, MA, MR 1821549
Reference: [8] Draper, C., Garvín, A., Palomo, F.J.: Invariant affine connections on odd-dimensional spheres.Annals of Global Analysis and Geometry, 49, 3, 2016, 213-251, Springer, MR 3485984, 10.1007/s10455-015-9489-6
Reference: [9] Elduque, A., Kochetov, M.: Gradings on simple Lie algebras.189, 2013, American Mathematical Soc., MR 3087174
Reference: [10] Elduque, A., Myung, H.C.: Color algebras and affine connections on $S^6$.Journal of Algebra, 149, 1, 1992, 234-261, Academic Press, MR 1165209, 10.1016/0021-8693(92)90014-D
Reference: [11] Elduque, A., Myung, H.C.: The reductive pair $(B_3,G_2)$ and affine connections on $S^7$.Journal of Pure and Applied Algebra, 86, 2, 1993, 155-171, Elsevier, MR 1215643, 10.1016/0022-4049(93)90100-8
Reference: [12] Elduque, A., Myung, H.C.: The reductive pair $(B_{4}, B_{3})$ and affine connections on $S^{15}$.Journal of Algebra, 227, 2, 2000, 504-531, Academic Press, MR 1759833
Reference: [13] Kinyon, M.K., Weinstein, A.: Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces.American Journal of Mathematics, 123, 3, 2001, 525-550, Johns Hopkins University Press, MR 1833152, 10.1353/ajm.2001.0017
Reference: [14] Kobayashi, S., Nomizu, K.: Foundations of differential geometry I.1, 2, 1963, Interscience Publishers, New York-London, Zbl 0119.37502, MR 0152974
Reference: [15] Kobayashi, S., Nomizu, K.: Foundations of differential geometry II.1, 2, 1969, Interscience Publishers, New York-London-Sidney, MR 0238225
Reference: [16] Laquer, H.T.: Invariant affine connections on Lie groups.Transactions of the American Mathematical Society, 331, 2, 1992, 541-551, JSTOR, MR 1075384, 10.1090/S0002-9947-1992-1075384-4
Reference: [17] Laquer, H.T.: Invariant affine connections on symmetric spaces.Proceedings of the American Mathematical Society, 1992, 447-454, JSTOR, MR 1107273, 10.1090/S0002-9939-1992-1107273-6
Reference: [18] Medina, P.A.: Flat left-invariant connections adapted to the automorphism structure of a Lie group.Journal of Differential Geometry, 16, 3, 1981, 445-474, Lehigh University, MR 0654637
Reference: [19] Myung, H.C.: Malcev-admissible algebras.1986, Birkhäuser Boston, Inc., Boston, MA, Progress in Mathematics, 64. MR 0885089
Reference: [20] Nagai, S.: The classification of naturally reductive homogeneous real hypersurfaces in complex projective space.Archiv der Mathematik, 69, 6, 1997, 523-528, Springer, MR 1480520, 10.1007/s000130050155
Reference: [21] Nomizu, K.: Invariant affine connections on homogeneous spaces.American Journal of Mathematics, 76, 1, 1954, 33-65, JSTOR, MR 0059050, 10.2307/2372398
Reference: [22] Sagle, A.A.: Jordan algebras and connections on homogeneous spaces.Transactions of the American Mathematical Society, 187, 1974, 405-427, MR 0339013, 10.1090/S0002-9947-1974-0339013-6
Reference: [23] Vinberg, E.B.: Invariant linear connections in a homogeneous space.Trudy Moskovskogo Matematicheskogo Obshchestva, 9, 1960, 191-210, Moscow Mathematical Society, MR 0176418
Reference: [24] Wang, H.C.: On invariant connections over a principal fibre bundle.Nagoya Mathematical Journal, 13, 1958, 1-19, Cambridge University Press, MR 0107276, 10.1017/S0027763000023461
Reference: [25] Warner, F.W.: Foundations of differentiable manifolds and Lie groups.1983, Springer-Verlag, New York-Berlin, Corrected reprint of the 1971 edition. Graduate Texts in Mathematics 94. MR 0722297
Reference: [26] Yamaguti, K.: On the Lie triple system and its generalization.Journal of Science of the Hiroshima University, Series A (Mathematics, Physics, Chemistry), 21, 3, 1958, 155-160, Hiroshima University, Department of Mathematics, MR 0100047
.

Files

Files Size Format View
ActaOstrav_28-2020-2_8.pdf 537.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo