Previous |  Up |  Next

Article

Title: Conservative algebras and superalgebras: a survey (English)
Author: Popov, Yury
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 28
Issue: 2
Year: 2020
Pages: 231-251
Summary lang: English
.
Category: math
.
Summary: We give a survey of results obtained on the class of conservative algebras and superalgebras, as well as on their important subvarieties, such as terminal algebras. (English)
Keyword: Conservative algebra
Keyword: Jordan algebra
Keyword: Tits-Koecher-Kantor construction
Keyword: terminal algebra.
MSC: 17A15
MSC: 17A30
MSC: 17A70
idZBL: Zbl 07300191
idMR: MR4162931
.
Date available: 2021-03-03T08:53:55Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148704
.
Reference: [1] Allison, B.: A class of nonassociative algebras with involution containing the class of Jordan algebras.Mathematische Annalen, 237, 2, 1978, 133-156, MR 0507909, 10.1007/BF01351677
Reference: [2] Allison, B., Hein, W.: Isotopes of some nonassociative algebras with involution.Journal of Algebra, 69, 1981, 120-142, MR 0613862, 10.1016/0021-8693(81)90132-0
Reference: [3] Birkhoff, G.: On the structure of abstract algebras.Mathematical Proceedings of the Cambridge Philosophical Society, 31, 4, 1935, 433-454, Zbl 0013.00105, 10.1017/S0305004100013463
Reference: [4] Martín, A. Calderón, Ouaridi, A. Fernández, Kaygorodov, I.: The classification of $2$-dimensional rigid algebras.Linear and Multilinear Algebra, 68, 4, 2020, 828-844, MR 4072782, 10.1080/03081087.2018.1519009
Reference: [5] Cantarini, N., Kac, V.: Classification of linearly compact simple rigid superalgebras.International Mathematics Research Notices, 17, 2010, 3341-3393, MR 2680276
Reference: [6] Cantarini, N., Kac, V.: Classification of simple linearly compact $n$-Lie superalgebras.Communications in Mathematical Physics, 298, 3, 2010, 833-853, Zbl 1232.17008, MR 2670929, 10.1007/s00220-010-1049-0
Reference: [7] Cantarini, N., Kac, V.: Classification of simple linearly compact $N=6$ 3-algebras.Transformation Groups, 16, 3, 2011, 649-671, MR 2827038, 10.1007/s00031-011-9143-8
Reference: [8] Jacobson, N.: Structure and Representations of Jordan Algebras.1969, American Mathematical Society, Providence, R.I, MR 0251099
Reference: [9] Kac, V.: Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras.Communications in Algebra, 13, 5, 1977, 1375-1400, MR 0498755, 10.1080/00927877708822224
Reference: [10] Kantor, I.: Graded Lie algebras (Russian).Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 15, 1970, 227-266, MR 0297827
Reference: [11] Kantor, I.: Certain generalizations of Jordan algebras (Russian).Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 16, 1972, 407-499, MR 0321986
Reference: [12] Kantor, I.: A universal graded Lie superalgebra (Russian).Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 20, 1981, 162-175, MR 0622014
Reference: [13] Kantor, I.: On an extension of a class of Jordan algebras.Algebra and Logic, 28, 2, 1989, 117-121, MR 1065647, 10.1007/BF01979375
Reference: [14] Kantor, I.: Some problems in $\mathfrak {L}$-functor theory (Russian).Algebra and Logic, 16, 1989, 54-75, MR 1043625
Reference: [15] Kantor, I.: Terminal trilinear operations.Algebra and Logic, 28, 1, 1989, 25-40, MR 1061856, 10.1007/BF01980606
Reference: [16] Kantor, I.: An universal conservative algebra.Siberian Mathematical Journal, 31, 3, 1990, 388-395, MR 1084759, 10.1007/BF00970345
Reference: [17] Kaygorodov, I.: On the Kantor product.Journal of Algebra and Its Applications, 16, 5, 2017, MR 3661634, 10.1142/S0219498817501675
Reference: [18] Kaygorodov, I., Khrypchenko, M., Popov, Yu.: The algebraic and geometric classification of nilpotent terminal algebras.arXiv:1909.00358, 2019, MR 4173993
Reference: [19] Kaygorodov, I., Khudoyberdiyev, A., Sattarov, A.: One generated nilpotent terminal algebras.Communications in Algebra, 48, 10, 2020, 4355-4390, MR 4127122, 10.1080/00927872.2020.1761979
Reference: [20] Kaygorodov, I., Lopatin, A., Popov, Yu.: Conservative algebras of $2$-dimensional algebras.Linear Algebra and its Applications, 486, 2015, 255-274, MR 3401761, 10.1016/j.laa.2015.08.011
Reference: [21] Kaygorodov, I., Popov, Yu., Pozhidaev, A.: The universal conservative superalgebra.Communications in Algebra, 47, 10, 2019, 4064-4074, MR 3975987, 10.1080/00927872.2019.1576189
Reference: [22] Kaygorodov, I., Volkov, Yu.: Conservative algebras of $2$-dimensional algebras, II.Communications in Algebra, 45, 8, 2017, 3413-3421, MR 3609349
Reference: [23] Loos, O.: Jordan Pairs, Lecture Notes in Mathematics.1975, Springer Verlag, Berlin, MR 0444721
Reference: [24] Martínez, C., Zelmanov, E.: Representation theory for Jordan superalgebras I.Transactions of the American Mathematical Society, 362, 2, 2010, 815-846, MR 2551507, 10.1090/S0002-9947-09-04883-1
Reference: [25] Meyberg, K.: Lectures on Algebras and Triple Systems.1972, Lecture notes, University of Virginia, Charlottesville, MR 0340353
Reference: [26] Popov, Yu.: Representations of noncommutative Jordan superalgebras I.Journal of Algebra, 544, 2020, 329-390, MR 4026491, 10.1016/j.jalgebra.2019.09.018
Reference: [27] Pozhidaev, A., Shestakov, I.: Structurable superalgebras of Cartan type.Journal of Algebra, 323, 2010, 3230-3251, MR 2639975, 10.1016/j.jalgebra.2010.04.003
Reference: [28] Smirnov, O.: Simple and semisimple structurable algebras.Algebra and Logic, 29, 5, 1990, 377-379, MR 1155272, 10.1007/BF02215286
.

Files

Files Size Format View
ActaOstrav_28-2020-2_9.pdf 470.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo