Previous |  Up |  Next

Article

Title: Deformations of Metrics and Biharmonic Maps (English)
Author: Benkartab, Aicha
Author: Cherif, Ahmed Mohammed
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 28
Issue: 3
Year: 2020
Pages: 263-275
Summary lang: English
.
Category: math
.
Summary: We construct biharmonic non-harmonic maps between Riemannian manifolds $(M,g)$ and $(N,h)$ by first making the ansatz that $\varphi \colon (M,g) \rightarrow (N,h)$ be a harmonic map and then deforming the metric on $N$ by $$\tilde {h}_{\alpha }=\alpha h+(1-\alpha )df\otimes df$$ to render $\varphi $ biharmonic, where $f$ is a smooth function with gradient of constant norm on $(N,h)$ and $\alpha \in (0,1)$. We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds. (English)
Keyword: Riemannian geometry
Keyword: Harmonic maps
Keyword: Biharmonic maps
MSC: 53C20
MSC: 53C22
MSC: 58E20
idZBL: Zbl 1480.53051
idMR: MR4197078
.
Date available: 2021-03-03T08:56:33Z
Last updated: 2022-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/148707
.
Reference: [1] Baird, P., Fardoun, A., Ouakkas, S.: Conformal and semi-conformal biharmonic maps.Annals of Global Analysis and Geometry, 34, 4, 2008, 403-414, Springer, MR 2447908, 10.1007/s10455-008-9118-8
Reference: [2] Baird, P., Kamissoko, D.: On constructing biharmonic maps and metrics.Annals of Global Analysis and Geometry, 23, 1, 2003, 65-75, Springer, MR 1952859, 10.1023/A:1021213930520
Reference: [3] Baird, P., Wood, J.C.: Harmonic morphisms between Riemannian manifolds.29, 2003, Oxford University Press, MR 2044031
Reference: [4] Benkartab, A., Cherif, A.M.: New methods of construction for biharmonic maps.Kyungpook Mathematical Journal, 59, 1, 2019, 135-147, Department of Mathematics, Kyungpook National University, MR 3946694
Reference: [5] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of $\mathbb {S}^{3}$.International Journal of Mathematics, 12, 08, 2001, 867-876, World Scientific, MR 1863283
Reference: [6] Eells, J., Lemaire, L.: A report on harmonic maps.Bulletin of the London Mathematical Society, 10, 1, 1978, 1-68, Citeseer, Zbl 0401.58003, MR 0495450, 10.1112/blms/10.1.1
Reference: [7] Eells, J., Lemaire, L.: Another report on harmonic maps.Bulletin of the London Mathematical Society, 20, 5, 1988, 385-524, Oxford University Press, Zbl 0669.58009, MR 0956352, 10.1112/blms/20.5.385
Reference: [8] Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds.American Journal of Mathematics, 86, 1, 1964, 109-160, JSTOR, Zbl 0122.40102, MR 0164306, 10.2307/2373037
Reference: [9] K{ö}rpinar, T., Turhan, E.: Tubular surfaces around timelike biharmonic curves in Lorentzian Heisenberg group $\operatorname {Heis}^3$.Analele Universitatii ``Ovidius" Constanta -- Seria Matematica, 20, 1, 2012, 431-446, Sciendo, MR 2928433
Reference: [10] Oniciuc, C.: New examples of biharmonic maps in spheres.Colloquium Mathematicum, 97, 1, 2003, 131-139, MR 2010548, 10.4064/cm97-1-12
Reference: [11] Ouakkas, S.: Biharmonic maps, conformal deformations and the Hopf maps.Differential Geometry and its Applications, 26, 5, 2008, 495-502, Elsevier, MR 2458275, 10.1016/j.difgeo.2008.04.006
Reference: [12] Jiang, G.Y.: 2-harmonic maps and their first and second variational formulas.Chinese Ann. Math. Ser. A, 7, 4, 1986, 389-402, MR 0886529
Reference: [13] O'Neill, B.: Semi-Riemannian geometry with applications to relativity.1983, Academic Press, MR 0719023
Reference: [14] Sakai, T.: Riemannian geometry.1992, Shokabo, Tokyo, (in Japanese). MR 1390760
.

Files

Files Size Format View
ActaOstrav_28-2020-3_2.pdf 398.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo