Previous |  Up |  Next

Article

Title: Jets and the variational calculus (English)
Author: Saunders, David J.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 1
Year: 2021
Pages: 91-114
Summary lang: English
.
Category: math
.
Summary: We review the approach to the calculus of variations using Ehresmann's theory of jets. We describe different types of jet manifold, different types of variational problem and different cohomological structures associated with such problems. (English)
Keyword: Jets
Keyword: Calculus of variations
MSC: 58A20
MSC: 58E30
idZBL: Zbl 07413359
idMR: MR4251307
.
Date available: 2021-07-09T12:33:59Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148993
.
Reference: [1] Anderson, I.M.: The variational bicomplex.Technical report of Utah State University, 1989, available at https://ncatlab.org/nlab/files/AndersonVariationalBicomplex.pdf.
Reference: [2] Anderson, I.M., Duchamp, T.E.: Variational principles for second-order quasi-linear scalar equations.J. Diff. Eq., 51, 1, 1984, 1-47, MR 0727029, 10.1016/0022-0396(84)90100-1
Reference: [3] Betounes, D.E.: Extensions of the classical Cartan form.Phys. Rev. D, 29, 1984, 599-606, MR 0734285, 10.1103/PhysRevD.29.599
Reference: [4] Borel, É.: Sur quelques points de la théorie des fonctions.Ann. scient. de l'École Norm. Sup., 3, 12, 1895, 9-55, MR 1508908
Reference: [5] Carathéodory, C.: Über die Variationsrechnung bei mehrfachen Integralen.Acta Szeged Sect. Scient. Mathem., 4, 1929, 193-216,
Reference: [6] Crampin, M., Saunders, D.J.: The Hilbert--Carathéodory and Poincaré--Cartan forms for higher-order multiple-integral variational problems.Houston J. Math., 30, 3, 2004, 657-689, MR 2083869
Reference: [7] Do, T.: The inverse problem in the calculus of variations via exterior differential systems.2016, Ph.D. Thesis, La Trobe University, Melbourne, Australia.
Reference: [8] Do, T., Prince, G.: New progress in the inverse problem in the calculus of variations.Diff. Geom. Appl., 45, 2016, 148-179, MR 3457392, 10.1016/j.difgeo.2016.01.005
Reference: [9] Ehresmann, C.: Les prolongements d'une variété différentiable: calcul des jets, prolongement principal.C. R. Acad. Sci. Paris, 233, 1951, 598-600, MR 0044198
Reference: [10] Ehresmann, C.: Les prolongements d'une variété différentiable: l'espace des jets d'ordre $r$ de $V_n$ dans $V_m$.C. R. Acad. Sci. Paris, 233, 1951, 777-779, MR 0045435
Reference: [11] Ehresmann, C.: Les prolongements d'une variété différentiable: transitivité des prolongements.C. R. Acad. Sci. Paris, 233, 1951, 1081-1083, MR 0045436
Reference: [12] Ehresmann, C.: Les prolongements d'une variété différentiable: éléments de contact et éléments d'enveloppe.C. R. Acad. Sci. Paris, 234, 1952, 1028-1030, MR 0046737
Reference: [13] Ehresmann, C.: Les prolongements d'une variété différentiable: covariants différentiels et prolongements d'une structure infinitésimale.C. R. Acad. Sci. Paris, 234, 1952, 1424-1425, MR 0047385
Reference: [14] Frölicher, A., Nijenhuis, A.: Theory of vector valued differential forms. Part I.Ind. Math., 18, 1056, 338-360, MR 0082554
Reference: [15] Goldschmidt, H., Sternberg, S.: The Hamilton--Cartan formalism in the calculus of variations.Ann. Inst, Fourier, 23, 1, 1973, 203-267, MR 0341531, 10.5802/aif.451
Reference: [16] Kolář, I., Michor, P.W., Slovak, J.: Natural operations in differential geometry.1993, Springer, MR 1202431
Reference: [17] Kolář, I.: Natural operators related with the variational calculus.Differential Geometry and its Applications, Opava 1992, 1993, 461-472, Silesian University, Opava, MR 1255562
Reference: [18] Kolář, I.: Weil bundles as generalized jet space.Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 625-665, Elsevier, MR 2389643
Reference: [19] Kolář, I.: On special types of nonholonomic contact elements.Diff. Geom. Appl., 29, 5, 2011, 647-652, Zbl 1229.58005, MR 2831821, 10.1016/j.difgeo.2011.03.007
Reference: [20] Kriegl, A., Michor, P.: The Convenient Setting of Global Analysis.1997, AMS Mathematical Surveys and Monographs 53, Zbl 0889.58001, MR 1471480
Reference: [21] Krbek, M., Musilová, J.: Representation of the variational sequence by differential forms.Acta Appl. Math., 88, 2005, 177-199, MR 2169038, 10.1007/s10440-005-4980-x
Reference: [22] Krupka, D.: A map associated to the Lepagean forms in the calculus of variations.Czech. Math. J., 27, 1977, 114-118, MR 2523431, 10.21136/CMJ.1977.101449
Reference: [23] Krupka, D.: Variational sequences on finite order jet spaces.Differential Geometry and its Applications, Brno 1989, 1990, 236-254, World Scientific, MR 1062026
Reference: [24] Krupka, D.: The contact ideal.Diff. Geom. Appl., 5, 1995, 257-276, MR 1353059, 10.1016/0926-2245(95)92849-Z
Reference: [25] Krupka, D., Musilová, J.: Trivial Lagrangians in field theory.Diff. Geom. Appl., 9, 1998, 293-305, MR 1661189, 10.1016/S0926-2245(98)00023-0
Reference: [26] Libermann, P.: Introduction to the theory of semi-holonomic jets.Arch. Math. (Brno), 33, 1997, 173-189, MR 1478771
Reference: [27] Libermann, P.: Charles Ehresmann's concepts in differential geometry.Geometry and Topology of Manifolds, Banach Center Publications, vol. 76, 2007, 35-50, Institute of Mathematics, Polish Academy of Sciences, Warszawa, MR 2342844
Reference: [28] Manno, G., Vitolo, R.: Variational sequences on finite order jets of submanifolds.Differential Geometry and its Applications, Opava, 2001, 2001, 435-447, Silesian University at Opava, MR 1978797
Reference: [29] Olver, P.J.: Equivalence and the Cartan form.Acta Appl. Math., 31, 1993, 99-136, MR 1223167, 10.1007/BF00990539
Reference: [30] Saunders, D.J.: The geometry of jet bundles.1989, Cambridge, Zbl 0665.58002, MR 0989588
Reference: [31] Saunders, D.J.: A note on Legendre transformations.Diff. Geom. Appl., 1, 1991, 109-122, MR 1244438, 10.1016/0926-2245(91)90025-5
Reference: [32] Saunders, D.J.: Jet manifolds and natural bundles.Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 1037-1070, Elsevier, MR 2389651
Reference: [33] Saunders, D.J.: Homogeneous variational complexes and bicomplexes.J. Geom. Phys., 59, 2009, 727-739, Zbl 1168.58006, MR 2510165, 10.1016/j.geomphys.2009.03.001
Reference: [34] Saunders, D.J.: Horizontal forms on jet bundles.Balkan J. Geom. Appl., 15, 1, 2010, 149-154, MR 2608517
Reference: [35] Saunders, D.J.: Double structures and jets.Diff. Geom. Appl., 30, 1, 2012, 59-64, MR 2871705, 10.1016/j.difgeo.2011.11.006
Reference: [36] Saunders, D.J.: On Lagrangians with reduced-order Euler--Lagrange equations.SIGMA, 14, 2018, 089, 13 pages, MR 3846852
Reference: [37] Urban, Z., Krupka, D.: The Zermelo conditions and higher order homogeneous functions.Publ. Math. Debrecen, 82, 1, 2013, 59-76, MR 3034368, 10.5486/PMD.2013.5265
Reference: [38] Vitolo, R.: Variational sequences.Handbook of Global Analysis, ed. D. Krupka and D.J. Saunders, 2007, 1117-1160, Elsevier, MR 2389653
Reference: [39] Weil, A.: Théorie des points proches sur les variétés différentielles.Colloque de topologie et géométrie différentielle, 1953, 111-117, Strasbourg, MR 0061455
.

Files

Files Size Format View
ActaOstrav_29-2021-1_6.pdf 410.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo