Title:
|
Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability (English) |
Author:
|
Velásquez, Marco L. A. |
Author:
|
Ramalho, André F. A. |
Author:
|
de Lima, Henrique F. |
Author:
|
Santos, Márcio S. |
Author:
|
Oliveira, Arlandson M. S. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
62 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
175-200 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold $\overline{M}_f^{ n+1}$ endowed with a weight function $f$ and having a closed conformal Killing vector field $V$ with conformal factor $\psi_V$, that is, graphs constructed through the flow generated by $V$ and which are defined over an integral leaf of the foliation $V^{\perp}$ orthogonal to $V$. For such graphs, we establish some rigidity results under appropriate constraints on the $f$-mean curvature. Afterwards, we obtain some stability results for $f$-minimal conformal Killing graphs of $ \overline{M}_f^{ n+1}$ according to the behavior of $ \psi_V$. Finally, related to conformal Killing graphs immersed in $\overline{M}_f^{n+1}$ with constant $f$-mean curvature, we study the strong stability. (English) |
Keyword:
|
weighted Riemannian manifold |
Keyword:
|
conformal Killing graph |
Keyword:
|
$f$-mean curvature |
Keyword:
|
Bakry--Émery--Ricci tensor |
Keyword:
|
strong $f$-stability |
MSC:
|
53C42 |
idZBL:
|
Zbl 07396218 |
idMR:
|
MR4303577 |
DOI:
|
10.14712/1213-7243.2021.017 |
. |
Date available:
|
2021-07-28T08:36:18Z |
Last updated:
|
2023-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149011 |
. |
Reference:
|
[1] Aledo J. A., Rubio R. M.: Stable minimal surfaces in Riemannian warped products.J. Geom. Anal. 27 (2017), no. 1, 65–78. MR 3606544, 10.1007/s12220-015-9673-8 |
Reference:
|
[2] Alexandrov A. D.: Uniqueness theorems for surfaces in the large I.Vestnik Leiningrad Univ. 11 (1956), no. 19, 5–17 (Russian). MR 0086338 |
Reference:
|
[3] Alexandrov A. D.: A characteristic property of spheres.Ann. Mat. Pura Appl. 58 (1962), no. 4, 303–315. MR 0143162, 10.1007/BF02413056 |
Reference:
|
[4] Alías L. J., Dajczer M., Ripoll J. R.: A Bernstein-type theorem for Riemannian manifolds with a Killing field.Ann. Global Anal. Geom. 31 (2007), no. 4, 363–373. MR 2325221, 10.1007/s10455-006-9045-5 |
Reference:
|
[5] Alías L. J., de Lira J. H. S., Malacarne J. M.: Constant higher-order mean curvature hypersurfaces in Riemannian spaces.J. Inst. Math. Jussieu 5 (2006), no. 4, 527–562. Zbl 1118.53038, MR 2261223, 10.1017/S1474748006000077 |
Reference:
|
[6] Bakry D., Émery M.: Diffusions hypercontractives.Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, pages 177–206 (French). MR 0889476 |
Reference:
|
[7] Barbosa J. L. M., do Carmo M., Eschenburg J.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds.Math. Z. 197 (1988), no. 1, 123–138. MR 0917854, 10.1007/BF01161634 |
Reference:
|
[8] Batista M., Cavalcante M. P., Pyo J.: Some isoperimetric inequalities and eigenvalue estimates in weighted manifolds.J. Math. Anal. Appl. 419 (2014), no. 1, 617–626. MR 3217170, 10.1016/j.jmaa.2014.04.074 |
Reference:
|
[9] Bernstein S.: Sur les surfaces définies au moyen de leur courboure moyenne ou totale.Ann. Sci. École Norm. Sup. 27 (1910), no. 3, 233–256 (French). MR 1509123, 10.24033/asens.621 |
Reference:
|
[10] Caminha A.: The geometry of closed conformal vector fields on Riemannian spaces.Bull. Braz. Math. Soc. (N.S.) 42 (2011), no. 2, 277–300. Zbl 1242.53068, MR 2833803, 10.1007/s00574-011-0015-6 |
Reference:
|
[11] Caminha A., de Lima H. F.: Complete vertical graphs with constant mean curvature in semi-Riemannian warped products.Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 1, 91–105. MR 2498961, 10.36045/bbms/1235574194 |
Reference:
|
[12] Cañete A., Rosales C.: Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities.Cal. Var. Partial Differential Equations 51 (2014), no. 3–4, 887–913. MR 3268875, 10.1007/s00526-013-0699-0 |
Reference:
|
[13] Castro K., Rosales C.: Free boundary stable hypersurfaces in manifolds with density and rigidity results.J. Geom. Phys. 79 (2014), 14–28. MR 3176286, 10.1016/j.geomphys.2014.01.013 |
Reference:
|
[14] Cavalcante M. P., de Lima H. F., Santos M. S.: On Bernstein-type properties of complete hypersurfaces in weighted warped products.Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 309–322. MR 3476675, 10.1007/s10231-014-0464-9 |
Reference:
|
[15] Dajczer M., de Lira J. H.: Conformal Killing graphs with prescribed mean curvature.J. Geom. Anal. 22 (2012), no. 3, 780–799. MR 2927678, 10.1007/s12220-011-9214-z |
Reference:
|
[16] Dajczer M., Hinojosa P., de Lira J. H.: Killing graphs with prescribed mean curvature.Calc. Var. Partial Differential Equations 33 (2008), no. 2, 231–248. Zbl 1152.53046, MR 2413108, 10.1007/s00526-008-0163-8 |
Reference:
|
[17] de Lima H. F., de Lima J. R., Velásquez M. A. L.: On the nullity of conformal Killing graphs in foliated Riemannian spaces.Aequationes Math. 87 (2014), no. 3, 285–299. MR 3266117 |
Reference:
|
[18] de Lima H. F., de Lima J. R., Velásquez M. A. L.: Entire conformal Killing graphs in foliated Riemannian spaces.J. Geom. Anal. 25 (2015), no. 1, 171–188. MR 3299274, 10.1007/s12220-013-9418-5 |
Reference:
|
[19] de Lima H. F., Oliveira A. M., Velásquez M. A. L.: On the uniqueness of complete two-sided hypersurfaces immersed in a class of weighted warped products.J. Geom. Anal. 27 (2017), no. 3, 2278–2301. MR 3667431, 10.1007/s12220-017-9761-z |
Reference:
|
[20] Fang F., Li X.-D., Zhang Z.: Two generalizations of Cheeger–Gromoll splitting theorem via Bakry–Émery Ricci curvature.Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 563–573. MR 2521428, 10.5802/aif.2440 |
Reference:
|
[21] Hieu D. T., Nam T. L.: Bernstein type theorem for entire weighted minimal graphs in $\mathbb{G}^n\times\mathbb{R}$.J. Geom. Phys. 81 (2014), 87–91. MR 3194217, 10.1016/j.geomphys.2014.03.011 |
Reference:
|
[22] Impera D., de Lira J. H., Pigola S., Setti A. G.: Height estimates for Killing graphs.J. Geom. Anal. 28 (2018), no. 3, 2857–2885. MR 3833821, 10.1007/s12220-017-9938-5 |
Reference:
|
[23] Impera D., Rimoldi M.: Stability properties and topology at infinity of $f$-minimal hypersurfaces.Geom. Dedicata 178 (2015), 21–47. MR 3397480, 10.1007/s10711-014-9999-6 |
Reference:
|
[24] Jellett J. J.: Sur la surface dont la courbure moyenne est constante.J. Math. Pures Appl. 18 (1853), 163–167 (French). |
Reference:
|
[25] Lichnerowicz A.: Variétés Riemanniennes à tenseur C non négatif.C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A650–A653 (French). MR 0268812 |
Reference:
|
[26] Lichnerowicz A.: Variétés Kählériennes à première classe de Chern non negative et variétés Riemanniennes à courbure de Ricci généralisée non negative.J. Differential Geometry 6 (1971/72), 47–94 (French). MR 0300228 |
Reference:
|
[27] Liebmann H.: Eine neue Eigenschaft der Kugel.Nachr. Kg. Ges. Wiss. Götingen, Math. Phys. Kl. (1899), 44–55 (German). |
Reference:
|
[28] McGonagle M., Ross J.: The hyperplane is the only stable, smooth solution to the isoperimetric problem in Gaussian space.Geom. Dedicata 178 (2015), 277–296. MR 3397495, 10.1007/s10711-015-0057-9 |
Reference:
|
[29] Montiel S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds.Indiana Univ. Math. J. 48 (1999), no. 2, 711–748. MR 1722814, 10.1512/iumj.1999.48.1562 |
Reference:
|
[30] O'Neill B.: Semi-Riemannian Geometry.With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983. MR 0719023 |
Reference:
|
[31] Pan T. K.: Conformal vector fields in compact Riemannian manifolds.Proc. Amer. Math. Soc. 14 (1963), 653–657. MR 0157324, 10.1090/S0002-9939-1963-0157324-2 |
Reference:
|
[32] Rosales C., Ca nete A., Bayle V., Morgan F.: On the isoperimetric problem in Euclidean space with density.Calc. Var. Partial Differential Equations 31 (2008), no. 1, 27–46. MR 2342613, 10.1007/s00526-007-0104-y |
Reference:
|
[33] Wei G., Wylie W.: Comparison geometry for the Bakry–Émery Ricci tensor.J. Differential Geom. 83 (2009), no. 2, 377–405. MR 2577473 |
Reference:
|
[34] Yau S. T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry.Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. MR 0417452, 10.1512/iumj.1976.25.25051 |
. |