Previous |  Up |  Next

Article

Title: On the hyperspace $C_n(X)/{C_n}_K(X)$ (English)
Author: Anaya, José G.
Author: Castañeda-Alvarado, Enrique
Author: Martínez-Cortez, José A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 2
Year: 2021
Pages: 201-224
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a continuum and $n$ a positive integer. Let $C_n(X)$ be the hyperspace of all nonempty closed subsets of $X$ with at most $n$ components, endowed with the Hausdorff metric. For $K$ compact subset of $X$, define the hyperspace ${C_n}_K(X)=\{A\in C_n(X)\colon K\subset A\}$. In this paper, we consider the hyperspace $C_K^n(X)=C_n(X)/{C_n}_K(X)$, which can be a tool to study the space $C_n(X)$. We study this hyperspace in the class of finite graphs and in general, we prove some properties such as: aposyndesis, local connectedness, arcwise disconnectedness, and contractibility. (English)
Keyword: hyperspace
Keyword: continuum
Keyword: containment hyperspace
Keyword: aposyndesis
Keyword: finite graph
Keyword: Peano continuum
Keyword: contractibility
MSC: 54B15
MSC: 54B20
MSC: 54F15
idZBL: Zbl 07396219
idMR: MR4303578
DOI: 10.14712/1213-7243.2021.018
.
Date available: 2021-07-28T08:38:01Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/149012
.
Reference: [1] Anaya J. G., Castañeda-Alvarado E., Fuentes-Montes de Oca A., Orozco-Zitli F.: Making holes in the cone, suspension and hyperspaces of some continua.Comment. Math. Univ. Carolin. 59 (2018), no. 3, 343–364. MR 3861557
Reference: [2] Baik B. S., Hur K., Rhee C. J.: $R^i$-sets and contractibility.J. Korean Math. Soc. 34 (1997), no. 2, 309–319. MR 1455544
Reference: [3] Bennett D. E.: Aposyndetic properties of unicoherent continua.Pacific J. Math. 37 (1971), 585–589. MR 0305370, 10.2140/pjm.1971.37.585
Reference: [4] Camargo J., Macías S.: Quotients of $n$-fold hyperspaces.Topology Appl. 197 (2016), 154–166. MR 3426913
Reference: [5] Castañeda-Alvarado E., Mondragón R. C., Ordoñez N., Orozco-Zitli F.: The hyperspace $F^K_n(X)$.Bull. Iranian Math. Soc. 47 (2021), no. 3, 659–678. MR 4249170
Reference: [6] Charatonik J. J.: Monotone mappings and unicoherence at subcontinua.Topology Appl. 33 (1989), no. 2, 209–215. MR 1020282, 10.1016/S0166-8641(89)80009-4
Reference: [7] Charatonik J. J.: Recent research in hyperspace theory.Extracta Math. 18 (2003), no. 2, 235–262. MR 2002449
Reference: [8] Duda R.: On the hyperspaces of subcontinua of a finite graph. I.Fund. Math. 62 (1968), 265–286. MR 0236881, 10.4064/fm-62-3-265-286
Reference: [9] Escobedo R., López M. de J., Macías S.: On the hyperspace suspension of a continuum.Topology Appl. 138 (2004), no. 1–3, 109–124. MR 2035475, 10.1016/j.topol.2003.08.024
Reference: [10] Hernández-Gutiérrez R., Martínez-de-la-Vega V.: Rigidity of symmetric products.Topology Appl. 160 (2013), no. 13, 1577–1587. MR 3091331, 10.1016/j.topol.2013.06.001
Reference: [11] Illanes Mejía A.: Hiperespacios de continuos.Aportaciones Matemáticas, Serie Textos, 28, Sociedad Matemática Mexicana, México, 2004 (Spanish). MR 2111741
Reference: [12] Illanes A., Nadler S. B., Jr.: Hyperspaces.Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, New York, 1999. MR 1670250
Reference: [13] Macías J. C.: On the $n$-fold pseudo-hyperspace suspension of continua.Glas. Mat. Ser. III 43(63) (2008), 439–449. MR 2460710, 10.3336/gm.43.2.14
Reference: [14] Macías S.: Hyperspaces and cones.Proc. Amer. Math. Soc. 125 (1997), no. 10, 3069–3073. MR 1425134, 10.1090/S0002-9939-97-04175-0
Reference: [15] Macías S.: On the hyperspaces $\mathscr{C}_n(X)$ of a continuum $X$. II.Proc. of the 2000 Topology and Dynamics Conf., San Antonio, Topology Proc. 25 (2000), 255–276. MR 1875596
Reference: [16] Macías S.: On the hyperspaces $\mathscr{C}_n(X)$ of a continuum $X$.Topology Appl. 109 (2001), no. 2, 237–256. MR 1806337, 10.1016/S0166-8641(99)00151-0
Reference: [17] Macías S.: On the $n$-fold hyperspace suspension of continua.Topology Appl. 138 (2004), no. 1–3, 125–138. MR 2035476, 10.1016/j.topol.2003.08.023
Reference: [18] Macías S.: On the $n$-fold hyperspace suspension of continua. II.Glas. Mat. Ser. III 41(61) (2006), no. 2, 335–343. MR 2282743
Reference: [19] Martínez-de-la-Vega V.: Dimension of $n$-fold hyperspaces of graphs.Houston J. Math. 32 (2006), no. 3, 783–799. MR 2247910
Reference: [20] Nadler S. B., Jr.: Hyperspaces of Sets.Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York, 1978. Zbl 1125.54001, MR 0500811
Reference: [21] Nadler S. B., Jr.: A fixed point theorem for hyperspaces suspensions.Houston J. Math. 5 (1979), no. 1, 125–132. MR 0533646
Reference: [22] Nadler S. B., Jr.: Continuum Theory.An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. Zbl 0819.54015, MR 1192552
Reference: [23] Nadler S. B., Jr.: Dimension Theory, An Introduction with Exercises.Aportaciones Matemáticas, Serie Textos, 18, Sociedad Matemática Mexicana, México, 2002. MR 1925171
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-2_6.pdf 330.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo