Title:
|
On the continuity of the elements of the Ellis semigroup and other properties (English) |
Author:
|
García-Ferreira, Salvador |
Author:
|
Rodríguez-López, Yackelin |
Author:
|
Uzcátegui, Carlos |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
62 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
225-241 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider discrete dynamical systems whose phase spaces are compact metrizable countable spaces. In the first part of the article, we study some properties that guarantee the continuity of all functions of the corresponding Ellis semigroup. For instance, if every accumulation point of $X$ is fixed, we give a necessary and sufficient condition on a point $a\in X'$ in order that all functions of the Ellis semigroup $E(X,f)$ be continuous at the given point $a$. In the second part, we consider transitive dynamical systems. We show that if $(X,f)$ is a transitive dynamical system and either every function of $E(X,f)$ is continuous or $|\omega_f(x)|=1$ for each accumulation point $x$ of $X$, then $E(X,f)$ is homeomorphic to $X$. Several examples are given to illustrate our results. (English) |
Keyword:
|
discrete dynamical system |
Keyword:
|
Ellis semigroup |
Keyword:
|
$p$-iterate |
Keyword:
|
$p$-limit point |
Keyword:
|
ultrafilter |
Keyword:
|
compact metric countable space |
MSC:
|
54D80 |
MSC:
|
54G20 |
idZBL:
|
Zbl 07396220 |
idMR:
|
MR4303579 |
DOI:
|
10.14712/1213-7243.2021.014 |
. |
Date available:
|
2021-07-28T08:39:13Z |
Last updated:
|
2023-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149013 |
. |
Reference:
|
[1] Akin E., Glasner E.: WAP systems and labeled subshifts.Mem. Amer. Math. Soc. 262 (2019), no. 1265, v+116 pages. MR 4044461 |
Reference:
|
[2] Blass A.: Ultrafilters: where topological dynamics = algebra = combinatorics.Topology Proc. 18 (1993), 33–56. MR 1305122 |
Reference:
|
[3] Bernstein A. R.: A new kind of compactness for topological spaces.Fund. Math. 66 (1969/70), 185–193. Zbl 0198.55401, MR 0251697, 10.4064/fm-66-2-185-193 |
Reference:
|
[4] Ellis R.: A semigroup associated with a transformation group.Trans. Amer. Math. Soc. 94 (1960), 272–281. MR 0123636, 10.1090/S0002-9947-1960-0123636-3 |
Reference:
|
[5] Ellis R., Nerurkar M.: Weakly almost periodic flows.Trans. Amer. Math. Soc. 313 (1989), no. 1, 103–119. MR 0930084, 10.1090/S0002-9947-1989-0930084-3 |
Reference:
|
[6] Furstenberg H.: Recurrence in Ergodic Theory and Combinatorial Number Theory.M. B. Porter Lectures, Princeton University Press, Princeton, 1981. Zbl 0459.28023, MR 0603625 |
Reference:
|
[7] García-Ferreira S.: Dynamical properties of certain continuous self maps of the Cantor set.Topology Appl. 159 (2012), no. 7, 1719–1733. MR 2904060, 10.1016/j.topol.2011.06.062 |
Reference:
|
[8] García-Ferreira S., Rodriguez-López Y., Uzcátegui C.: Iterates of dynamical systems on compact metrizable countable spaces.Topology Appl. 180 (2015), 100–110. MR 3293269, 10.1016/j.topol.2014.11.007 |
Reference:
|
[9] García-Ferreira S., Rodríguez-López Y., Uzcátegui C.: Cardinality of the Ellis semigroup on compact metric countable spaces.Semigroup Forum 97 (2018), no. 1, 162–176. MR 3818356, 10.1007/s00233-017-9888-z |
Reference:
|
[10] García-Ferreira S., Sanchis M.: Ultrafilter-limit points in metric dynamical systems.Comment. Math. Univ. Carolin. 48 (2007), no. 3, 465–485. MR 2374128 |
Reference:
|
[11] Glasner E.: Enveloping semigroups in topological dynamics.Topology Appl. 154 (2007), no. 11, 2344–2363. MR 2328017, 10.1016/j.topol.2007.03.009 |
Reference:
|
[12] Hindman N.: Ultrafilters and Ramsey theory-an update.Set Theory and Its Applications, Lecture Notes in Mathematics, 1401, Springer, Berlin, 1989, pages 97–118. MR 1031768, 10.1007/BFb0097334 |
Reference:
|
[13] Mazurkiewicz S., Sierpiński W.: Contribution à la topologie des ensembles dénombrables.Fundamenta Mathematicae 1 (1920), 17–27 (Spanish). 10.4064/fm-1-1-17-27 |
Reference:
|
[14] Szuca P.: $\mathcal{F}$-limit points in dynamical systems defined on the interval.Cent. Eur. J. Math. 11 (2013), no. 1, 170–176. MR 2988790 |
. |