Previous |  Up |  Next

Article

Title: Multiplicative Lie triple derivations on standard operator algebras (English)
Author: Wani, Bilal Ahmad
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 3
Year: 2021
Pages: 357-369
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal {X}$ be a Banach space of dimension $n>1$ and $\mathfrak {A} \subset \mathcal {B}(\mathcal {X})$ be a standard operator algebra. In the present paper it is shown that if a mapping $d:\mathfrak {A} \rightarrow \mathfrak {A}$ (not necessarily linear) satisfies $$d([[U,V],W])=[[d(U),V],W]+[[U,d(V)],W]+[[U,V],d(W)]$$ for all $U, V, W \in \mathfrak {A}$, then $d=\psi +\tau $, where $\psi $ is an additive derivation of $\mathfrak {A}$ and $\tau : \mathfrak {A} \rightarrow \mathbb {F}I$ vanishes at second commutator $[[U,V],W]$ for all $U, V, W \in \mathfrak {A}$. Moreover, if $d$ is linear and satisfies the above relation, then there exists an operator $S\in \mathfrak {A}$ and a linear mapping $\tau $ from $\mathfrak {A}$ into $\mathbb {F}I$ satisfying $\tau ([[U,V],W])=0$ for all $U, V, W \in \mathfrak {A}$, such that $d(U)=SU-US+\tau (U)$ for all $U\in \mathfrak {A}$. (English)
Keyword: Multiplicative Lie derivation
Keyword: multiplicative Lie triple derivation
Keyword: standard operator algebra.
MSC: 16W25
MSC: 47B47
MSC: 47B48
idZBL: Zbl 07484373
idMR: MR4355418
.
Date available: 2022-01-10T10:00:17Z
Last updated: 2022-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/149322
.
Reference: [1] Cheung, W.: Lie derivations of triangular algebras.Linear Multilinear Algebra, 51, 2003, 299-310, MR 1995661, 10.1080/0308108031000096993
Reference: [2] Chen, L., Zhang, J.H.: Nonlinear Lie derivations on upper triangular matrices.Linear Multilinear Algebra, 56, 6, 2008, 725-730, MR 2457697, 10.1080/03081080701688119
Reference: [3] Daif, M.N.: When is a multiplicative derivation additive?.International Journal of Mathematics and Mathematical Sciences, 14, 3, 1991, 615-618, 10.1155/S0161171291000844
Reference: [4] Halmos, P.: A Hilbert space Problem Book, 2nd ed..1982, Springer-Verlag, New York,
Reference: [5] Jing, W., Lu, F.: Lie derivable mappings on prime rings.Linear Multilinear Algebra, 60, 2012, 167-180, MR 2876765, 10.1080/03081087.2011.576343
Reference: [6] Ji, P., Zhao, R. Liu and Y.: Nonlinear Lie triple derivations of triangular algebras.Linear Multilinear Algebra, 60, 2012, 1155-1164, MR 2983757, 10.1080/03081087.2011.652109
Reference: [7] Ji, P.S., Wang, L.: Lie triple derivations of TUHF algebras.Linear Algebra Appl., 403, 2005, 399-408, Zbl 1114.46048, MR 2140293, 10.1016/j.laa.2005.02.004
Reference: [8] Lu, F.: Additivity of Jordan maps on standard operator algebras.Linear Algebra Appl., 357, 2002, 123-131, MR 1935229, 10.1016/S0024-3795(02)00367-1
Reference: [9] Lu, F.: Lie triple derivations on nest algebras.Math. Nachr., 280, 8, 2007, 882-887, Zbl 1124.47054, MR 2326061
Reference: [10] Lu, F., Jing, W.: Characterizations of Lie derivations of $\mathcal{B}(\mathcal{X})$.Linear Algebra Appl., 432, 1, 2010, 89-99, MR 2566460, 10.1016/j.laa.2009.07.026
Reference: [11] Lu, F., Liu, B.: Lie derivable maps on $\mathcal {B}(\mathcal {X})$.Journal of Mathematical Analysis and Applications, 372, 2010, 369-376, MR 2678869, 10.1016/j.jmaa.2010.07.002
Reference: [12] Mathieu, M., Villena, A. R.: The structure of Lie derivations on $C^\ast $-algebras.J. Funct. Anal., 202, 2003, 504-525, MR 1990536, 10.1016/S0022-1236(03)00077-6
Reference: [13] III, W.S. Martindale: When are multiplicative mappings additive?.Proc. Amer. Math. Soc., 21, 1969, 695-698, 10.1090/S0002-9939-1969-0240129-7
Reference: [14] Mires, C.R.: Lie derivations of von Neumann algebras.Duke Math. J., 40, 1973, 403-409,
Reference: [15] Mires, C.R.: Lie triple derivations of von Neumann algebras.Proc. Am. Math. Soc., 71, 1978, 57-61, 10.1090/S0002-9939-1978-0487480-9
Reference: [16] Šemrl, P.: Additive derivations of some operator algebras.llinois J. Math., 35, 1991, 234-240,
Reference: [17] Villena, A.R.: Lie derivations on Banach algebras.J. Algebra, 226, 2000, 390-409, 10.1006/jabr.1999.8193
Reference: [18] Yu, W., Zhang, J.: Nonlinear Lie derivations of triangular algebras.Linear Algebra Appl., 432, 11, 2010, 2953-2960, MR 2639258, 10.1016/j.laa.2009.12.042
Reference: [19] Zhang, J.H., Wu, B.W., Cao, H.X.: Lie triple derivations of nest algebras.Linear Algebra Appl., 416, 2-3, 2006, 559-567, MR 2242444, 10.1016/j.laa.2005.12.003
Reference: [20] Zhang, F., Zhang, J.: Nonlinear Lie derivations on factor von Neumann algebras.Acta Mathematica Sinica. (Chin. Ser), 54, 5, 2011, 791-802, MR 2918674
.

Files

Files Size Format View
ActaOstrav_29-2021-3_3.pdf 326.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo